The aim of this study was to compare the effect of conventional implant site preparation technique and a combination of conventional/piezosurgery preparation on implant stability measured at different time intervals, insertion torque, and preparation time. A randomized controlled study was designed, it included 26 patients who received 54 dental implants randomly assigned to 2 groups; in the control group, implants were installed after conventional preparation with drills whereas the study group received implants after mixed conventional/piezosurgery preparation. The outcome variables included: implant stability measured immediately after implant insertion, at 8 weeks and 16 weeks postoperatively, insertion torque and preparation time. All the investigated variables were analyzed statistically using 1 sample Kolmogrov-Simirenov test, Mann-Whitney U test, paired and unpaired Student t test, the Pearson χ test, Fisher exact test, and analysis of variance (1-way ANOVA). The differences were considered significant at P ≤ 0.05. Implant stability showed a similar pattern in both the groups which consists of a statistically significant decrease in implant stability quotient values at the 8th week followed by a statistically significant increase at the 16th week, where the implant stability quotient values return close to those of primary stability. The 2 groups revealed a statistically not significant difference in insertion torque and implant stability changes throughout the study period, whereas the preparation time was significantly longer in the study group than the control group. The mixed conventional/piezosurgery method of implant site preparation offers no additional advantage over the conventional drilling method in terms of values of insertion torque and patterns of implant stability change throughout the healing period.
Phenytoin selective electrodes were constructed based on penytoin-phosphotungstate (Ph-PT) complex with different plasticizers; di-butyl phosphate (DBP), tri-butyl phosphate (TBP), di-butyl phthalate (DBPH),and o-nitro phenyl octyl ether (NPOE) phthalate. The electrodes based on DBPH, ONPOE plasticizers gave Narnistain slope which are, 56.4 and 55.3mV/decade with detection limit of 1.9x10-5 M , 1.8x10-5 and concentration range 10-1 to 10-4 M and pH range 3.0 – 8.0. The electrodes based on TBP and DBP showed non-Nernistain slopes, 40.2,40.5 mV/decade for both plasticizers. Interfering of some cations was investigated and shows no interfering with electrodes response. Potentiometric methods were used for measuring phenytion in
... Show MoreA transdermal drug delivery system (TDDS) is characterized by the application of medications onto the skin's surface to deliver drugs at a controlled and predefined rate through the skin. Spanlastics, an elastic nanovesicle capable of transporting various pharmacological substances, shows promise as a drug delivery carrier. It offers numerous advantages over traditional vesicular systems applied topically, including enhanced stability, flexibility in penetration, and improved targeting capabilities. This study aims to develop meloxicam (MX)-loaded spanlastics gel as skin delivery carriers and to look into the effects of formulation factors like Tween80, Brij 35, and carbopol concentration on the properties of spanlastics gel, like pH, drug
... Show MoreNanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption
... Show MoreThe current research aims to: 1- Identify the emotional sensitivity of children from the parents' point of view. 2- Identifying the differences in the emotional sensitivity of children from the parents ’point of view, according to the parents’ gender variable (father - mother). The basic research sample consisted of (285) male and female students from the sixth grade (primary school), chosen in a randomized stratified method from the districts (Al-Karkh and AlRasafa). While the sample of statistical analysis amounted to (200) father and (200) mothers of male and female students who were randomly selected from the sixth grade of the education directorates (Al-Karkh and Al-Rasafa). The two researchers also used a number of sta
... Show MoreThe purpose of this study was to develop poloxamer-based in-situ gel of chloramphenicol aiming to increase bioavailability and prolong corneal contact time, controlling drug release, and enhancing ocular bioavailability. The in-situ gel was prepared using different concentrations of poloxamer 407 combined with hydroxypropyl methyl cellulose (HPMC) or carbapol 940 to achieve gelation temperature about physiological temperature and improve rheological behavior and gelling properties of poloxamer gel. The prepared formulations were evaluated for their appearance, pH, and sol-gel transition temperature. The formulations F2, F3, and F5 have a gelation temperature within the accepted range 35-370C an
... Show MorePolymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications. Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different proce
... Show MoreAbstract
Locally natural occurring Iraqi rocks of Bauxite and Porcelanite (after pre calcinations at 1000oC for 1hr) were used, with the addition of different proportions of MgO and Al2O3, to prepare refractory materials. The effects of these additives on the physical and thermal properties of the prepared refractories were investigated.
Many batches of Bauxite/MgO, Bauxite/Al2O3, Bauxite/MgO/Al2O3, and Porcelanite/ MgO/Al2O3 were prepared. The mixture is milled and classified into different size fractions; fine (less than 45μm) 40%, middle (45-75μm) 40%, and coarse (75-106μm) 20% .
... Show MoreBackground: Fast dissolving oral drug delivery system is solid dosage form which disintegrates or dissolves within second when placed in the mouth without need of water or chewing. In present investigation, an attempt has been made to develop oral fast dissolving film of calcium channel blocker lacidipine. Method: Five formulas were prepared by solvent casting method using HPMC (METOLOSE)® as a film forming polymer and evaluated for their physical characteristics such as thickness, weight variation, folding endurance, drug content, disintegration time and in vitro drug release. The compatibility of the drug in the formulation was confirmed by FTIR and DSC studies. Result and Conclusion: The optimized formula F1 showed minimum in vitr
... Show More