In the absence of environmental regulation, food stays to be contaminated with heavy metals, which is becoming a big worry for human health. The present research focusses on the environmental and health effects of irrigating a number of crops grown in the soils surrounding the Al-Rustamia old plant using treated wastewater generated by the plant. The physicochemical properties, alkalinity, and electrical conductivity of the samples were evaluated, and vegetable samples were tested for Cd, Pb, Ni, and Zn, levels, and even the transfer factor (TF) from soils to crops and crop and multi-targeted risk, daily intake (DIM) of metals, and health risk index (HRI) was calculated. The findings found that the average contents of Zn, Pb, Ni, and Cd in soil and vegetation were less than the Food and Agriculture Organization’s standards of food safety enhancers. The flooded soil included Zn (56.5), Pb (15.1), Ni (9.30), and Cd (0.850) mg·kg-1. The heavy-metal concentration trend in all samples was Zn, Pb, Ni, and Cd. Daily metal intake in crops species was above acceptable limits for Zinc (0.011 – 0.019 mg·kg-1), Lead (2.010-5 – 5.910-5 mg·kg-1), Ni (2.410-4 – 5.210-4 mg·kg-1) and Cd (1.310-5 – 3.310-5 mgkg-1). The HRI for zinc varied between 0.037 and 0.063, for lead between 5.10-3 and 1.410-2, for nickel from 1.210-2 to 2.610-2, and for cadmium from 1.310-2 to 3.310-2. The HRI for such components was larger than one, suggesting that no possible health issue existed. Crop cultivation using wastewater is a typical solution for water-stressed nations; nevertheless, previous screening and processing of such industrial wastewaters is required to minimise its detrimental effects on the environment.
Specific microorganisms can produce bacterial nanocellulose (BNC), with acetic acid bacteria (AAB) being the most active producer. The family Acetobacteraceae includes the obligate aerobic, motile acetic acid bacteria. The BNC has attracted a lot of interest across a wide range of industries, including pharmaceuticals, due to its flexible characteristics, properties, and advantages. The present study was conducted to purify and characterize BNC produced from AAB isolated from apple vinegar. Bacterial nanocellulose was synthesized using a natural date palm liquid medium at pH 6 at 30°C for 8–10 days. The bacterial cellulose produced was then purified using a technique involving 0.1 M sodium hydroxide. To ascertain the surface mor
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreIn this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
The purpose of this study was to investigate the difference in mandibular trauma caused by two mechanisms for the delivery of missile injuries: firearms and improvised explosive devices (IEDs). The data investigated included sex, age, mechanism of injury, and other clinical and radiographic manifestations. Seventy consecutive patients, predominantly male, with a mean age of 28.6 ± 14 years (range 2–60 years) were enrolled: 38 patients (54.3%) sustained mandibular fractures caused by bullet injuries and 32 patients (45.7%) had mandibular fractures caused by IED explosion injuries. The study revealed that the differences in most of the investigated variables were not statistically significant; the only significant differences were the inci
... Show MoreAbstract:
The aim of this research is to highlight the importance of achieving customer satisfaction by using information technology and Internet networks in the process of purchasing flight tickets, and switching from the traditional method of purchasing and payment operations to the electronic method, to reduce the financial and non-financial risks associated with the traditional purchasing process, as well as saving time, effort and costs for the customer. The researcher used the deductive approach in linking the variables (achieving customer satisfaction and Internet of Things technology for booking electronic tickets)
... Show MoreThis study includes the preparation of the ferrite nano ferrite CuxAl0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) M using the auto combustion method (sol-gel), and citric acid was used as fuel for auto combustion. The ferrite samples were checked by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopes (FE-SEM), and energy dispersive X-ray analyzer (EDX). They showed that the prepared compound has a face-centered cubic structure (FCC). The lattice constant increases with an increase in the percentage of doping of the copper ions, and a decrease for the aluminum ion and that the compound is porous and its grains are spherical, and there are no other
... Show MoreThe catalytic cracking of three feeds of extract lubricating oil, that produced as a by-product from the process of furfural extraction of lubricating oil base stock in AL-Dura refinery at different operating condition, were carried out at a fixed bed laboratory reactor. The initial boiling point for these feeds was 140 ºC for sample (1), 86 ºC for sample (2) and 80 ºC for sample (3). The catalytic cracking processes were carried out at temperature range 325-400 ºC and initially at atmospheric pressure after 30 minutes over 9.88 % HY-zeolite catalyst load. The comparison between the conversion at different operating conditions of catalytic cracking processes indicates that a high yield was obtained at 375°C, according to gasoline pr
... Show MoreThe influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa). To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the second method, sudden, water splash was use
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreIn this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.