Preferred Language
Articles
/
nxfXgJEBVTCNdQwCoZXC
PERFORMANCE OF TWO-WAY NESTING TECHNIQUES FOR SHALLOW WATER MODELS
...Show More Authors

A new two-way nesting technique is presented for a multiple nested-grid ocean modelling system. The new technique uses explicit center finite difference and leapfrog schemes to exchange information between the different subcomponents of the nested-grid system. The performance of the different nesting techniques is compared, using two independent nested-grid modelling systems. In this paper, a new nesting algorithm is described and some preliminary results are demonstrated. The validity of the nesting method is shown in some problems for the depth averaged of 2D linear shallow water equation.

Publication Date
Mon Dec 30 2019
Journal Name
College Of Islamic Sciences
Qur'anic intentions in the Prophet’s Investigation (Selected models)
...Show More Authors

This research deals with the role of Qur’anic intents in facilitating and facilitating the understanding of the reader and the seeker of knowledge of the verses of the Holy Qur’an, particularly in the doctrinal investigations (prophecies), and the feature that distinguishes reference to the books of the intentions or the intentional interpretations is that it sings from referring to the books of speakers and delving into their differences in contractual issues and facilitating access To the meanings, purposes and wisdom that the wise street wanted directly from the rulings and orders contained in the verses of the wise Qur’an.

View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (31)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Tue Feb 14 2023
Journal Name
Journal Of Educational And Psychological Researches
The Evaluation of Educational Quality Management and the Way to Improve It in the College of Education for Women at the University of Baghdad from the Teachers’ Point of View
...Show More Authors

The research aims to examine the evaluation of educational quality management and the ways to improve it in the College of Education for Women at the University of Baghdad from the point of view of the academic staff. The research community consisted of (288) participants comprising all members of the academic staff in the College of Education for Women at the University of Baghdad for the academic year (2019-2020). As for the questionnaire, it was distributed to the academic staff of the scientific departments according to their affiliation for the purpose of identifying the availability of the requirements of the quality of the teaching service provided to them by the educational institution. The researcher adopted a questionnaire deve

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 09 2025
Journal Name
Scientific Reports
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Mathematical Models And Computer Simulations
Function Approximation Technique (FAT)-Based Adaptive Feedback Linearization Control for Nonlinear Aeroelastic Wing Models Considering Different Actuation Scenarios
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Fri Jun 20 2014
Journal Name
Jurnal Teknologi
A Review of Snake Models in Medical MR Image Segmentation
...Show More Authors

Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal

... Show More
Scopus (10)
Scopus
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 05 2016
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
EVALUATION OF CHEMICAL AND MICROBIAL QUALITY FOR SOME BOTTLED WATER THAT AVAIABLE IN LOCAL MARKETS: EVALUATION OF CHEMICAL AND MICROBIAL QUALITY FOR SOME BOTTLED WATER THAT AVAIABLE IN LOCAL MARKETS
...Show More Authors

This study was conducted to evaluate the bottled water quality for the six-producing companies in Baghdad city, where selected six brands which are the most marketed in the Iraqi market, especially in Baghdad, where taking the proper amount of bottled water in September 2015 and included the studied characteristics (EC , pH ,TDS, Turbidity, Ca+2, Mg+2, Cl-, No3-, So4-2, HCO3-, Na+ and K+) in addition to the total population of bacteria aerobic and coliform, and compare the results with the standard specifications of the Iraqi and the World Health Organization (WHO), as well as to compare the results of sampling specifications mentioned on the packaging by the producing companies. The results showed the presence of high significant differ

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 28 2025
Journal Name
Energies
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Jun 30 2012
Journal Name
Al-kindy College Medical Journal
The Necessity of Teaching Diabetic Patients the Correct way of Insulin Administration: A Clinical Trial to Improve Glycemic Control
...Show More Authors

Background: It is important to achieve good glycemic control to avoid long-term diabetic complications. It has been largely debated about the role of correct way of insulin administration to get the desired glycemic control.
Objective: To evaluate the effect of teaching diabetic patients who are on insulin therapy the correct way of injecting insulin and its effect on glycemic control.
Methods: A non randomized clinical trial with 820 diabetic patients on insulin therapy on whom A1 c estimation was performed before and after three months of teaching them the right injection technique.
Results : Sixty seven patients (8.17%) had A1 c 6.5% before they were enrolled in the study while the majority (753 patents, 91.82%) had A1 c 6.5%

... Show More
View Publication Preview PDF