The image caption is the process of adding an explicit, coherent description to the contents of the image. This is done by using the latest deep learning techniques, which include computer vision and natural language processing, to understand the contents of the image and give it an appropriate caption. Multiple datasets suitable for many applications have been proposed. The biggest challenge for researchers with natural language processing is that the datasets are incompatible with all languages. The researchers worked on translating the most famous English data sets with Google Translate to understand the content of the images in their mother tongue. In this paper, the proposed review aims to enhance the understanding of image captioning strategies and to survey previous research related to image captioning while examining the most popular databases in different languages, mostly English, translating into other languages using the latest models for describing images, summarizing evaluation measures, and comparing them.
|
The research aims to reveal the relationship between the use of social networking sites and the image that females make about their physical formation, the nature of the effects, their value judgments about the image of their bodies, their attitudes toward plastic surgery, the most important types of these processes for them, their motivations to conduct them, and the cultural pressures they are exposed to. The study, moreover, investigates in the effects of those plastic surgery on their behavior as active and interacting users with what is published on social media, according to the theory of social comparison. This paper is an attempt to understand the pattern of social networking |
Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreBy reading the book (Endless Forms Most Beautiful: The New Science of Evo Devo) by Sean B. Carroll, new horizons opened up about the nature of the formation of the living organism. Although he presented the idea that the artist was influenced by the material assets of nature in his holographic art formations, the new science of Evo-Devo (Evolutionary Developmental Science) provided models worth standing on when comparing the similarity of the formation of living organisms on the one hand, and the formation of works of art with holographic organic bodies on the other. But the excitement lies in the fact that the formation of living natural organisms is often driven by subtle intelligent mechanisms that are different from the mechanisms us
... Show More
This research deals with what so called concept of The Human Model and how Iraqi Media concerns of this concept practically as it plays a key role in attracting readers, on the first hand. On the second, it is important to shed light on the scientific desire of the Iraqi Media and how it deals with this contemporary trend especially in editorial media.
The importance of the research stems from the fact that it alerts to a new stream of modern trends in journalistic writing, according to many modern Arab and foreign media studies; and to the importance of employing human modeling in dealing with facts, events, issues and problems in various editorial arts within their effective influence in concilia
... Show MoreOur aim was to investigate the inclusion of sexual and reproductive health and rights (SRHR) topics in medical curricula and the perceived need for, feasibility of, and barriers to teaching SRHR. We distributed a survey with questions on SRHR content, and factors regulating SRHR content, to medical universities worldwide using chain referral. Associations between high SRHR content and independent variables were analyzed using unconditional linear regression or χ2 test. Text data were analyzed by thematic analysis. We collected data from 219 respondents, 143 universities and 54 countries. Clinical SRHR topics such as safe pregnancy and childbirth (95.7%) and contraceptive methods
A rapid, simple and sensitive spectrophotometric method for the determination of trace amounts of chromium is studied. The method is based on the interaction of chromium with indigo carmine dye in acidic medium and the presence of oxalates as a catalyst for interaction, and after studying the absorption spectrum of the solution resulting observed decrease in the intensity of the absorption. As happened (Bleaching) for color dye, this palace and directly proportional to the chromium (VI) amount was measured intensity of the absorption versus solution was figurehead at a wavelength of 610 nm. A plot of absorbance with chromium (VI) concentration gives a straight line indicating that Beer’s law has been obeyed over the range of 0.5
... Show MoreIn recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.
... Show MoreFractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show More