In the present study, silver nanoparticles (AgNPs) were prepared using an eco-friendly method synthesized in a single step biosynthetic using leaves aqueous extract of Piper nigrum, Ziziphus spina-christi, and Eucalyptus globulus act as a reducing and capping agents, as a function of volume ratio of aqueous extract(100ppm) to AgNO3 (0.001M), (1: 10, 2: 10, 3: 10). The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AgNPs showed surface Plasmon resonance centered at 443, 440, and 441 nm for sample prepared using extract Piper nigrum, Ziziphus spina-christi, and Eucalyptus respectively. The XRD pattern showed that the strong intense peaks indicate crystalline nature and face centered cubic structure of silver nanoparticles for all samples were prepared. The average crystallite size of the AgNPs was 20-45 nm. Morphology of the AgNPs were carried out using FESEM. Observations show that the AgNPs synthesized were spherical(Cluster) in shape. with diameters of 13 to 53 nm.
In this rescrch,new mixed ligand Schiff base complexes of Mn(II),Co(II),Ni(II),Cu(II), Cd(II), and Hg(II) are formulated from the Schiff base( L)resulting from o-phathalaldehyde(o-PA) with p-nitroaniline(p-NA)as a primary ligand and anthranilic acid as a subordinate ligand. Diagnosis of prepared Ligand and its complexes is done by spectral methods mass spectrometer;1H -NMR for ligand Schiff base FTIR, UV-Vis, molar conductance, elemental microanalyses, atomic absoption and magnetic susceptibility. The analytical studies for the all new complexes have shown octahedral geometries. The study of organicperformance of ligand Schiff base and its complexes show various activity agansit four type of bactria two gram (+) and two gram (-) .
The mixed ligand complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with alanine and 8-hydroxyqinoline (Oxine) were synthesized and characterized by FT-IR ,spectra electronic, flam-AAS] along with conductivity measurements , solubility , melting point, magnetic susceptipibility.The synthesized complexes were tested in vitro for antimicrobial activity. The results obtained indicated that some of these complexes are more active than with others.
We described herein the synthesized and characterized of new bent and liner core compounds containing thiazolidin-4-one ring[XI-XIII] and [XIV-XVI] respectively. These compounds synthesized by sequence reactions starting from reaction resorcinol or hydroquinone with chloracetyl chloride to yield compounds [I] and [II] ,then the later compounds reactant with 4-hydroxybenzylaldehyde to product dialdehyde compounds [III] and [IV] .The Schiff bases compounds[V-VII] and [VIII-X] synthesized from reaction the compound [III] or [IV] with different aromatic amines, while the bent and liner core mesogens containing thiazolidin-4-one ring [XI-XIII] and [XIV-XVI] synthesized from reaction Schiff bases compounds[V-VII] or [VIII-X]
... Show MoreSynthesis, Characterization And Biological Evaluation of Schiff Base And Ligand Metal Complexes of Some Drug Substances
Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of
... Show MoreWe described herein the synthesized and characterized of new bent and liner core compounds containing thiazolidin-4-one ring[XI-XIII] and [XIV-XVI] respectively. These compounds synthesized by sequence reactions starting from reaction resorcinol or hydroquinone with chloracetyl chloride to yield compounds [I] and [II] ,then the later compounds reactant with 4-hydroxybenzylaldehyde to product dialdehyde compounds [III] and [IV] .The Schiff bases compounds[V-VII] and [VIII-X] synthesized from reaction the compound [III] or [IV] with different aromatic amines, while the bent and liner core mesogens containing thiazolidin-4-one ring [XI-XIII] and [XIV-XVI] synthesized from reaction Schiff bases compounds[V-VII] or [VIII-X] with thioglycolic aci
... Show MoreA new series of Schiff bases compounds , containing an azomethine linkage was synthesized and expected to be biologically active .The structures of these compounds were identified by IR , Uv/vis spectra , melting points and followed by T.L.C.The biological activity of these compounds was studied
Objective: This study involved the synthesis of new Schiff bases and 1,3-oxazepine derivatives from the baclofen drug and study the anticancer activities. Methods: Baclofen was initially reacted with aromatic aldehydes to create Schiff base derivatives (Ia–Ib), which were then closed in the next step using anhydrous acids to form oxazepine derivatives (IIa–IId). Results: The title compounds were synthesized successfully and identified using FT-IR, 1H NMR, and 13C NMR spectroscopy. Additionally, compound (IIc)’s (3-(4-chloro-phenyl)-4-[2-(4nitro-phenyl)-4,7-dioxo-4,7-dihydro-[1,3] oxazepin-3-yl]butyric acid) anticancer activity was assessed using MTT assay against FTC-133 (thyroid cancer) compared with WRL-68 (normal cell line). Discus
... Show MoreMeta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,