In the present study, silver nanoparticles (AgNPs) were prepared using an eco-friendly method synthesized in a single step biosynthetic using leaves aqueous extract of Piper nigrum, Ziziphus spina-christi, and Eucalyptus globulus act as a reducing and capping agents, as a function of volume ratio of aqueous extract(100ppm) to AgNO3 (0.001M), (1: 10, 2: 10, 3: 10). The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AgNPs showed surface Plasmon resonance centered at 443, 440, and 441 nm for sample prepared using extract Piper nigrum, Ziziphus spina-christi, and Eucalyptus respectively. The XRD pattern showed that the strong intense peaks indicate crystalline nature and face centered cubic structure of silver nanoparticles for all samples were prepared. The average crystallite size of the AgNPs was 20-45 nm. Morphology of the AgNPs were carried out using FESEM. Observations show that the AgNPs synthesized were spherical(Cluster) in shape. with diameters of 13 to 53 nm.
Influence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.
The size and the concentration of the gold nanoparticles (GNPs)
synthesized in double distilled deionized water (DDDW) have been
found to be affected by the laser energy and the number of pulses.
The absorption spectra of the nanoparticles DDDW, and the
surface plasmon resonance (SPR) peaks were measured, and found to
be located between (509 and 524)nm using the UV- Vis
spectrophotometer. SPR calculations, images of transmission
electron microscope, and dynamic light scattering (DLS) method
were used to determine the size of GNPs, which found to be ranged
between (3.5 and 27) nm. The concentrations of GNPs in colloidal
solutions found to be ranged between (37 and 142) ppm, and
measured by atomic absorptio
In this study, the Halder-Wagner method was used for an analysisX-ray lines of Tio2 nanoparticles. Where the software was used to calculate the FWHM and integral breath (β) to calculate the area under the curve for each of the lines of diffraction. After that, the general equation of the halder- Wagner method is applied to calculate the volume (D), strain (ε), stress (σ), and energy per unit(u). Volume (β). Where the value of the crystal volume was equal to (0.16149870 nm) and the strain was equal to (1.044126), stress (181.678 N / m2), and energy per unit volume (94.8474 J m-3).The results obtained from these methods were then compared with those obtained from each of the new paradigm of the HalderWagner method, the Shearer developm
... Show MoreAbstract :- In this paper, silver nanoparticles had been prepared by chemical reduction method. Many tests had been done to it such as UV-Visible spectrophotometer, XRD, AFM&SEM test. finally an attempt had been done to get the optimum condition to control the grain size of silver Nanoparticles by variation the heating period and other parameters which has an effect in silver Nanoparticles synthesis process. in this method we can get a silver nanoparticles in the size range from 52 to 97 nm.
The protozoan parasite Entamoeba histolytica is a causative agent of amoebiasis, where it causes millions of cases of dysentery and liver abscess each year. Metronidazole is a drug of choice against amoebiasis. The drug is a choice because of its efficacy and low cost, but at the same time it causes several adverse side effects; therefore, it is important to find effective medications to treat amoebiasis without any complications or any side effects. The aim of this study is to evaluate the effectiveness of different concentrations (50, 75 and 100 µg/ml) of silver nanoparticle (AgNPs) against trophozoites stages of E. histolytica in vitro. The results showed a significant decrease (p ? 0.05) in numbers of trophozoites stages after treated
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreThe plant occupied the largest area in the biosynthesis of silver nanoparticles, especially the medicinal plants, and it has shown great potential in biotechnology applications. In this study, green synthesis of silver nanoparticles from Moringa oleifera leaves extract and its antifungal and antitumor activities were investigated. The formation of silver nanoparticles was observed after 1 hour of preparation color changing. The ultraviolet and visible spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques were used to characterize synthesis particles. Ultraviolet and visible spectroscopy showed a silver surface plasmon resonance band at 434
... Show MoreSilver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities. Capping agents are used for exhibiting a better antibacterial activity than uncapped Ag NPs. There are very few reports that have shown the usage of AgNPs for in-vivo antibacterial therapy. Citrate-capped silver nanoparticles were synthesized chemically by citrate reduction method; the size of Cit-AgNPs was determined by an atomic force microscope (AFM) and was between 15-90 nm. Acinetobacter baumannii (A. baumannii) isolates were the only sensitive species to Cit-AgNPs. MICs and MBC of Cit-AgNPs were determined by using A. baumannii. The results showed an additive effect of Cit-AgNPs. Four mice groups were infected with
... Show MoreIn the present study, the effect of Zinc nanoparticles on levels of (T3 , T4 and TSH) hormones was investigated. Zinc nanoparticles were synthesized by Laser induced plasma.The Nd: YAG Nd: YAG laser with a wavelength of 1064 nm was used to generate nanomaterials of the elements (zinc) upon collision with target atoms. Plasma generated by different laser intensity is generated. After confirming the preparation of zinc nanoparticles, XRD, AFM was examined, and the effect of these substances on the thyroid gland (T3, T4, TSH) was observed for two doses of each component (1 ml / kg, 4 ml / kg) after conducting a cytotoxicity examination of the lymphocytes of the rats extracted from Rat spleen was 1.8% less toxic to zinc, and as noted The
... Show More