Preferred Language
Articles
/
nxbXw4gBVTCNdQwCO4Ft
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To verify the reliability of training data for zone-by-zone modeling, we split the scenario into two scenarios and applied them to seven wells' worth of data. Moreover, all wellbore intervals were processed, for instance, all five units of Mishrif formation. According to the findings, the more information we have, the more accurate our forecasting model becomes. Multi-resolution graph-based clustering has demonstrated its forecasting stability in two instances by comparing it to the other five machine learning models.

Scopus Crossref
View Publication
Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Different Methods to Predict Oil in Place in Mishrif Formation / Amara Oil Field
...Show More Authors

The reserve estimation process is continuous during the life of the field due to risk and inaccuracy that are considered an endemic problem thereby must be studied. Furthermore, the truth and properly defined hydrocarbon content can be identified just only at the field depletion. As a result, reserve estimation challenge is a function of time and available data. Reserve estimation can be divided into five types: analogy, volumetric, decline curve analysis, material balance and reservoir simulation, each of them differs from another to the kind of data required. The choice of the suitable and appropriate method relies on reservoir maturity, heterogeneity in the reservoir and data acquisition required. In this research, three types of rese

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Sep 24 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Iris Data Compression Based on Hexa-Data Coding
...Show More Authors

Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the origin

... Show More
View Publication
Crossref
Publication Date
Thu Sep 01 2016
Journal Name
2016 8th Computer Science And Electronic Engineering (ceec)
Class-specific pre-trained sparse autoencoders for learning effective features for document classification
...Show More Authors

View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Energy Reports
Global solar radiation prediction over North Dakota using air temperature: Development of novel hybrid intelligence model
...Show More Authors

View Publication
Scopus (75)
Crossref (77)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Environmental Pollution
Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models
...Show More Authors

View Publication
Crossref (96)
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Iraqi Journal Of Science,
Monitoring Vegetation Growth of Spectrally Landsat Satellite Imagery ETM+ 7 & TM 5 for Western Region of Iraq by Using Remote Sensing Techniques.
...Show More Authors

Landsat-5 Thematic Mapper (TM) has been imaging the Earth since March 1984 and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) was added to the series of Landsat instruments in April 1999. In this paper the two sensors are used to monitoring the agriculture condition and detection the changing in the area of plant covers, the stability and calibration of the ETM+ has been monitored extensively since launch although it is not monitored for many years, TM now has a similar system in place to monitor stability and calibration. By referring to statistical values for the classification process, the results indicated that the state of vegetation in 1990 was in the proportion of 42.8%, while this percentage rose to 52.5% for the same study area in

... Show More
View Publication
Publication Date
Fri Dec 01 2023
Journal Name
Iraqi Journal Of Physics
Assessment of Sustainable Urban Expansion with Land Use and Land Cover Changes for Al-Hillah City Using Remote Sensing and GIS Techniques
...Show More Authors

In the current study, remote sensing techniques and geographic information systems were used to detect changes in land use / land cover (LULC) in the city of Al Hillah, central Iraq for the period from 1990 - 2022. Landsat 5 TM and Landsat 8 OLI visualizations, correction and georeferencing of satellite visuals were used. And then make the necessary classifications to show the changes in LULC in the city of Al Hillah. Through the study, the results showed that there is a clear expansion in the urban area from 20.5 km2 in 1990 to about 57 km2 in 2022. On the other hand, the results showed that there is a slight increase in agricultural areas and water. While the arid (empty) area decreased from 168.7 km 2 to 122 km 2 in 2022. Long-term ur

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
International Journal Bioautomation
Model for Prediction of the Weight and Height Measurements of Patients with Disabilities for Diagnosis and Therapy
...Show More Authors

Background: Accurate measurement of a patient’s height and weight is an essential part of diagnosis and therapy, but there is some controversy as to how to calculate the height and weight of patients with disabilities. Objective: This study aims to use anthropometric measurements (arm span, length of leg, chest circumference, and waist circumference) to find a model (alternatives) that can allow the calculation of the height and the body weight of patients with disabilities. Additionally, a model for the prediction of weight and height measurements of patients with disabilities was established. Method: Four hander patients aged 20-80 years were enrolled in this study and divided into two groups, 210 (52.5%) male and 190 (47.5%) fe

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref