Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To verify the reliability of training data for zone-by-zone modeling, we split the scenario into two scenarios and applied them to seven wells' worth of data. Moreover, all wellbore intervals were processed, for instance, all five units of Mishrif formation. According to the findings, the more information we have, the more accurate our forecasting model becomes. Multi-resolution graph-based clustering has demonstrated its forecasting stability in two instances by comparing it to the other five machine learning models.
As the reservoir conditions are in continuous changing during its life, well production rateand its performance will change and it needs to re-model according to the current situationsand to keep the production rate as high as possible.Well productivity is affected by changing in reservoir pressure, water cut, tubing size andwellhead pressure. For electrical submersible pump (ESP), it will also affected by numberof stages and operating frequency.In general, the production rate increases when reservoir pressure increases and/or water cutdecreases. Also the flow rate increase when tubing size increases and/or wellhead pressuredecreases. For ESP well, production rate increases when number of stages is increasedand/or pump frequency is
... Show MoreLithology identification plays a crucial role in reservoir characteristics, as it directly influences petrophysical evaluations and informs decisions on permeable zone detection, hydrocarbon reserve estimation, and production optimization. This paper aims to identify lithology and minerals composition within the Mishrif Formation of the Ratawi Oilfield using well log data from five open hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. At this step, the logging lithology identification tasks often involve constructing a lithology identification model based on the assumption that the log data are interconnected. Lithology and minerals were identified using three empirical methods: Neutron-Density cross plots for lithology id
... Show MoreThe phenomena of Dust storm take place in barren and dry regions all over the world. It may cause by intense ground winds which excite the dust and sand from soft, arid land surfaces resulting it to rise up in the air. These phenomena may cause harmful influences upon health, climate, infrastructure, and transportation. GIS and remote sensing have played a key role in studying dust detection. This study was conducted in Iraq with the objective of validating dust detection. These techniques have been used to derive dust indices using Normalized Difference Dust Index (NDDI) and Middle East Dust Index (MEDI), which are based on images from MODIS and in-situ observation based on hourly wi
Due to the easily access to the satellite images, Google Earth (GE) images have become more popular than other online virtual globes. However, the popularity of GE is not an indication of its accuracy. A considerable amount of literature has been published on evaluating the positional accuracy of GE data; however there are few studies which have investigated the subject of improving the GE accuracy. In this paper, a practical method for enhancing the horizontal positional accuracy of GE is suggested by establishing ten reference points, in University of Baghdad main campus, using different Global Navigation Satellite System (GNSS) observation techniques: Rapid Static, Post-Processing Kinematic, and Network. Then, the GE image for the study
... Show MoreBackground: preparation of root canals is an important step in root canal treatment. Mechanical instrumentation of root canals cause an irregular layer of debris, known as the smear layer. As a result, several studies reported that preferring the removal of the smear layer. Objective: To study the influence of the energy (100 mJ) of Erbium, Chromium: Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser at short pulse duration (60 μs) on smear layer removal of apical third after using Photon induced photoacoustic streaming technique. Materials and methods: Eighteen straight single-rooted mandibular premolars were used. The roots length were uniform to 14mm from the anatomic apex and
... Show MoreThe maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Fol
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreA non-parametric kernel method with Bootstrap technology was used to estimate the confidence intervals of the system failure function of the log-normal distribution trace data. These are the times of failure of the machines of the spinning department of the weaving company in Wasit Governorate. Estimating the failure function in a parametric way represented by the method of the maximum likelihood estimator (MLE). The comparison between the parametric and non-parametric methods was done by using the average of Squares Error (MES) criterion. It has been noted the efficiency of the nonparametric methods based on Bootstrap compared to the parametric method. It was also noted that the curve estimation is more realistic and appropriate for the re
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show More