Preferred Language
Articles
/
nxb7BIcBVTCNdQwCLS1P
3D Object Recognition Using Fast Overlapped Block Processing Technique
...Show More Authors

Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2013
Journal Name
Photonics & Lasers In Medicine
The assessment of pathological changes in cerebral blood flow in hypertensive rats with stress-induced intracranial hemorrhage using Doppler OCT: Particularities of arterial and venous alterations/Die Beurteilung von pathologischen Veränderungen der Hirndurchblutung bei hypertensiven Ratten mit Stress-induzierten intrakraniellen Blutungen mittels Doppler-OCT: Besonderheiten von arteriellen und venösen Veränderungen
...Show More Authors
Abstract<p>Hemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst</p> ... Show More
View Publication
Scopus (13)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Results In Physics
Alpha clustering preformation probability in even-even and odd-A<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e3355" altimg="si39.svg"><mml:msup><mml:mrow /><mml:mrow><mml:mn>270</mml:mn><mml:mo>−</mml:mo><mml:mn>317</mml:mn></mml:mrow></mml:msup></mml:math>(116 and 117) using cluster formation model and the mass formulae : KTUY05 and WS4
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref