Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments.
Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding betwee
... Show MoreThis work describes the enhancement of phenol red decolorization through immobilizing of laccase in chitosan and enzyme recycling. Commercial laccase from white rot fungus, Trametesversicolor (Tvlac), was immobilizedin to freshly prepared chitosan beads by using glutaraldehyde as a cross linker. Characterization of prepared chitosan was confirmed by FTIR and scanning electron microscope (SEM). Tvlac (46.2 U/mL) immobilized into chitosan beads at 0.8 % glutaraldehyde (v/v) within 24 hrs. Synthetic (HBT) and natural (vanillin) mediators were used to enhance dye decolorizoation. It was found that 89 % of phenol red was decolorized by chitosan beads within 180 min. in the absence of enzyme and mediator, while decolorization percenta
... Show MoreIn this study, the photodegradation of Congo red dye (CR) in aqueous solution was investigated using Au-Pd/TiO2 as photocatalyst. The concentration of dye, dosage of photocatalyst, amount of H2O2, pH of the medium and temperature were examined to find the optimum values of these parameters. It has been found that 28 ppm was the best dye concentration. The optimum amount of photocatalyst was 0.09 g/75 mL of dye solution when the degradation percent was ~ 96 % after irradiation time of 12 hours, while the best amount of hydrogen peroxide was 7μl/75 mL of dye solution at degradation percent ~97 % after irradiation time of 10 hours, whereas pH 5 was the best value to carry out the reaction at the highest deg
... Show MoreIn this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show MoreThe study aims to demonstrate the significance of metaverse technology across various disciplines, academic degrees, scientific fields, and academic titles. It also aims to assess the level of knowledge and understanding of university teachers (research sample) regarding metaverse technology. Hence, the descriptive research methodology was based on the method of statistical survey in the sample. It involved a set of organized scientific steps to deduce data from the reality of the statistical sample and its nature in order to achieve the objectives of the study. In this study, a questionnaire was used as a tool to collect data from a random sample of approximately 121 teachers and instructors from the University of Baghdad. This app
... Show MoreOne of the main techniques to achieve phase behavior calculations of reservoir fluids is the equation of state. Soave - Redlich - Kwong equation of state can then be used to predict the phase behavior of the petroleum fluids by treating it as a multi-components system of pure and pseudo-components. The use of Soave – Redlich – Kwon equation of state is popular in the calculations of petroleum engineering therefore many researchers used it to perform phase behavior analysis for reservoir fluids (Wang and Orr (2000), Ertekin and Obut (2003), Hasan (2004) and Haghtalab (2011))
This paper presents a new flash model for reservoir fluids in gas – oil se
Computer software is frequently used for medical decision support systems in different areas. Magnetic Resonance Images (MRI) are widely used images for brain classification issue. This paper presents an improved method for brain classification of MRI images. The proposed method contains three phases, which are, feature extraction, dimensionality reduction, and an improved classification technique. In the first phase, the features of MRI images are obtained by discrete wavelet transform (DWT). In the second phase, the features of MRI images have been reduced, using principal component analysis (PCA). In the last (third) stage, an improved classifier is developed. In the proposed classifier, Dragonfly algorithm is used instead
... Show More