Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments.
Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
An experimental study was carried out to improve the surface roughness quality of the stainless steel 420 using magnetic abrasive finishing method (MAF). Four independent operation parameters were studied (working gap, coil current, feed rate, and table stroke), and their effects on the MAF process were introduced. A rotating coil electromagnet was designed and implemented to use with plane surfaces. The magnetic abrasive powder used was formed from 33%Fe and 67% Quartz of (250µm mesh size). The lubricant type SAE 20W was used as a binder for the powder contents. Taguchi method was used for designing the experiments and the optimal values of the selected parameters were found. An empirical equation representing the r
... Show MoreOvako Working Postures Analyzing System (OWAS) is a widely used method for studying awkward working postures in workplaces. This study with OWAS, analyzed working postures for manual material handling of laminations at stacking workstation for water pump assembly line in Electrical Industrial Company (EICO) / Baghdad. A computer program, WinOWAS, was used for the study. In real life workstation was found that more than 26% of the working postures observed were classified as either AC2 (slightly harmful), AC3 (distinctly harmful). Postures that needed to be corrected soon (AC3) and corresponding tasks, were identified. The most stressful tasks observed were grasping, handling, and positioning of the laminations from workers. The construct
... Show MoreIn this research, design of advanced material for sunlight conversion requires focused research to obtain efficient photocatalytic system. Nanostructured ZnO was synthesized using spin coating technique. The structural, morphological and optical properties of annealed nanostructured ZnO thin film at 390 Co for 3 hours were characterized by x-ray diffraction, atomic force microscope AFM and UV-VIS spectrophotometer. Nanostructured ZnO was applied for removal Methylene Blue (MB) dye from water using sunlight induced photocatalytic process. Overall degradation of MB/ZnO was achieved after 120 minutes of sunlight irradiation while it needs more time for MB alone. The reaction rate constant fit pseudo first order for MB/ZnO degradation was 0.
... Show MoreThis research is devoted to investigate relationship between both Ultrasonic Pulse Velocity and Rebound Number (Hammer Test) with cube compressive strength and also to study the effect of steel reinforcement on these relationships.
A study was carried out on 32 scale model reinforced concrete elements. Non destructive testing campaign (mainly ultrasonic and rebound hammer tests) made on the same elements. About 72 concrete cubes (15 X 15 X15) were taken from the concrete mixes to check the compressive strength.. Data analyzed.Include the possible correlations between non destructive testing (NDT) and compressive strength (DT) Statistical approach is used for this purpose. A new relationships obtained from correlations results is give
Iron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
Two oil wells were tested to find the abnormal pressure zones using sonic log technique. We found that well Abu-Jir-3 and Abu-Jir-5 had an abnormal pressure zones from depth 4340 to 4520 feet and 4200 to 4600 feet, respectively. The maximum difference between obtained results and the field measured results did not exceed 2.4%.
In this paper, the formation pressures were expressed in terms of pressure gradient which sometimes reached up to twice the normal pressure gradient.
Drilling and developing such formations were dangerous and expensive.
The plotted figures showed a clear derivation from the normal trend which confirmed the existence of abnormal pressure zones.