Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments.
Different injection material types were tried in the injection of soft clay, such as lime (L), silica fume (SF), and leycobond-h (LH). In this study, experiments were made to study the effect of injection on soft clay consolidation settlement. A sample of natural soft clayey soil was investigated in the laboratory and the sample was injected with each of the grout materials used, L, SF, L + SF, and L + SF + LH. A 20 cm3 of each slurry grout was conducted into the soil, which was compacted in California Bearing Ratio (CBR) mold and cured for 7 days, and then the sample was loaded to 80 N load by a circular steel footing 60 mm in diameter. The settlement was r
In this paper, we designed a new efficient stream cipher cryptosystem that depend on a chaotic map to encrypt (decrypt) different types of digital images. The designed encryption system passed all basic efficiency criteria (like Randomness, MSE, PSNR, Histogram Analysis, and Key Space) that were applied to the key extracted from the random generator as well as to the digital images after completing the encryption process.
In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.
In the field of construction project management, time and cost are the most important factors to be considered in planning every project, and their relationship is complex. The total cost for each project is the sum of the direct and indirect cost. Direct cost commonly represents labor, materials, equipment, etc.
Indirect cost generally represents overhead cost such as supervision, administration, consultants, and interests. Direct cost grows at an increasing rate as the project time is reduced from its original planned time. However, indirect cost continues for the life of the project and any reduction in project time means a reduction in indirect cost. Therefore, there is a trade-off between the time and cost for completing construc
This study aims to test ceramic waste's capacity to remove nickel from aqueous solutions through adsorption. Ceramic wastes were collected from the Refractories Manufacturing Plant in Ramadi. Through a series of lab tests, the reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 minutes, and Ni concentrations (20, 40, 60, and 80) were tested using ceramic wastes with a solid to liquid ratio of 2g/30ml. At a temperature of 30ºC, the pH, total dissolved solids (TDS), and electrical conductivity (EC) were all measured. The equilibrium time was set at 30 min. Thereafter, the sorption (%) somewhat increased positively with the Ni concentration. Freundlich's equation showed that the adsorption intensity is 1.1827 and the Freundlich c
... Show MoreHard water does not pose a threat to human health but may cause precipitation of soap or results stone in the boilers. These reactions are caused by the high concentrations of Ca and Mg. In the industry they are undesirable because of higher fuel consumption for industrial use .Electromagnetic polarization water treatment is a method which can be used for increasing the precipitation of Ca 2+ and CO3 2- ions in hard water to form CaCO3 which leads to decrease the water hardness is research has been conducted by changing the number of coil turns and voltage of the system. The spectroscopy electron microscope was used for imaging the produced crystals. Results of the investigation indicated that
... Show MoreA high sensitivity, low power and low cost sensor has been developed for photoplethysmography (PPG) measurement. The PPG principle was applied to follow the dilatation and contraction of skin blood vessels during the cardiac cycle. A standard light emitting diodes (LEDs) has been used as a light emitter and detector, and in order to reduce the space, cost and power, the classical analogue-to-digital converters (ADCs) replaced by the pulse-based signal conversion techniques. A general purpose microcontroller has been used for the implementation of measurement protocol. The proposed approach leads to better spectral sensitivity, increased resolution, reduction in cost, dimensions and power consumption. The basic sensing configuration prese
... Show MoreForward osmosis (FO) process was applied to concentrate the orange juice. FO relies on the driving force generating from osmotic pressure difference that result from concentration difference between the draw solution (DS) and orange juice as feed solution (FS). This driving force makes the water to transport from orange juice across a semi-permeable membrane to the DS without any energy applied. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Effects of various operating conditions on flux have been investigated. Four types of salts were used in the DS, (NaCl, CaCl2, KCl, and MgSO4) as osmotic agent and the experiments were performed at the concentration of
... Show More