Object tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this research, it is adopted for segmentation and tracking purposes. The proposed object tracking algorithm is initiated by detecting the target moving object manually. Then, the ADFAM convergence of the current video frame is reused as an initial estimation for the next video frame and so on. The proposed algorithm is applied to several video sequences, different in terms of the nature of the object, the nature of the background, the speed of the object, object motion direction, and the inter-frame displacement. Experimental results show that the proposed algorithm performed very well and successfully tracked the target object in all different cases.
Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of
... Show MoreA new Differential Evolution (ARDE) algorithm is introduced that automatically adapt a repository of DE strategies and parameters adaptation schemes of the mutation factor and the crossover rate to avoid the problems of stagnation and make DE responds to a wide range of function characteristics at different stages of the evolution. ARDE algorithm makes use of JADE strategy and the MDE_pBX parameters adaptive schemes as frameworks. Then a new adaptive procedure called adaptive repository (AR) has been developed to select the appropriate combinations of the JADE strategies and the parameter control schemes of the MDE_pBX to generate the next population based on their fitness values. Experimental results have been presented to confirm the reli
... Show MoreThis article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show MoreAnalyzing the impacts of Cattaneo-Christov flux, bioconvective Raleigh number and cross diffusion effects in electrically conducting micropolar fluid through a paraboloid revolution is assessed in this work. Non-dimensional equations are solved numerically using shooting technique with an aid of Matlab software. The impact of various parameters on velocity, temperature and concentration are discussed in detail and presented graphically. Harman number and micro rotation parameters are found and have an increasing influence on shear stress. The vertical velocity increases at free stream and the horizontal velocity increases near the surface when Grb increases, which follows the opposite trend for accumulation of Rb. T
... Show MoreNew polymer blend with enhanced properties was prepared from (80 %) epoxy resin (Ep), (20%) unsaturated polyester resin (UPE) as a matrix material. The as-obtained polymer blend was further reinforced by adding Sand particles of particle size (53 μm) with various weight fraction (5, 10, 15, 20 %). Thermal conductivity and sorption measurements are performed in order to determine diffusion coefficient in different chemical solutions (NaOH, HCl) with concentration (0.3N) after immersion for specific period of time (30 days). The obtained results demonstrate that the addition of sand powder to (80%EP/20%UPE) blend leads to an increase of thermal conductivity, with an optimum/minimum diffusion coefficient in (HCl)/(NaOH), respectively.
Current research aims to find out:
- Effect of using the active learning in the achievement of third grade intermediate students in mathematics.
- Effect of using of active learning in the tendency towards the study of mathematics for students of third grade intermediate.
In order to achieve the goals of the research, the researcher formulated the following two hypotheses null:
- There is no difference statistically significant at the level of significance (0.05) between two average of degrees to achievement