In this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increased by 11%, 11.5%, and 14% after 3, 7, and 28 days when utilizing fibers. The result shows that fly ash with a ratio of 50% by weight of slag improved the compressive strength of the mixture. It was discovered that a combination with 50% of the weight of fly ash with micro steel fibers, when treated at 240oC for curing age of 3, 7, and 28 days, had a flexural resistance rate of 28%, 30%, 33% higher than a mixture without fibers.
In the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refr
... Show MoreTransparent thin films of CdO:Ce has been deposited on to glass and silicon substrates by spray pyrolysis technique for various concentrations of cerium (2, 4, and 6 Vol.%). CdO:Ce films were characterized using different techniques such as X-ray diffraction (XRD), atomic force microscopy(AFM) and optical properties. XRD analysis show that CdO films exhibit cubic crystal structure with (1 1 1) preferred orientation and the intensity of the peak increases with increasing's of Ce contain when deposited films on glass substrate, while for silicon substrate, the intensity of peaks decreases, the results reveal that the grain size of the prepared thin film is approximately (73.75-109.88) nm various with increased of cerium content. With a sur
... Show MoreOsteoporosis is a systemic disease of the skeleton, characterized by low bone mass and alteration in the micro-architecture of the bone tissue that lead to an increase in brittleness with the ensuing predisposition to bone fracture. Global statistics shows that women are more exposed to this disease than men and in particular at menopause. This study was designed to evaluate the use of some bone markers: serum osteocalcin (Ost), alkaline phosphatase (ALP), as bone formation markers, also parathyroid hormone (PTH), calcium and inorganic phosphate level, for the assessment of patients with osteoporosis and to evaluate their role in monitoring of several types of therapeutic interventions (such as bisphosphonates, hormonal replacement thera
... Show MoreQuantum channels enable the achievement of communication tasks inaccessible to their
classical counterparts. The most famous example is the distribution of secret keys. Unfortunately, the rate
of generation of the secret key by direct transmission is fundamentally limited by the distance. This limit
can be overcome by the implementation of a quantum repeater. In order to boost the performance of the
repeater, a quantum repeater based on cut-off with two different types of quantum memories is suggestd,
which reduces the effect of decoherence during the storage of a quantum state.
<p>The current work investigated the combustion efficiency of biodiesel engines under diverse ratios of compression (15.5, 16.5, 17.5, and 18.5) and different biodiesel fuels produced from apricot oil, papaya oil, sunflower oil, and tomato seed oil. The combustion process of the biodiesel fuel inside the engine was simulated utilizing ANSYS Fluent v16 (CFD). On AV1 diesel engines (Kirloskar), numerical simulations were conducted at 1500 rpm. The outcomes of the simulation demonstrated that increasing the compression ratio (CR) led to increased peak temperature and pressures in the combustion chamber, as well as elevated levels of CO<sub>2</sub> and NO mass fractions and decreased CO emission values un
... Show MoreThe nephrotoxicity induced by methotrexate is a severe condition that greatly affects its therapeutic potential and has a significant inflammatory component. Fimasartan is an angiotensin receptor blocker that offers organ-protective effects and may be useful in mitigating renal injury. The present study explored the anti-inflammatory potential of two doses of fimasartan against methotrexate-mediated nephrotoxicity. Albino rats were intraperitoneally administered a single methotrexate (20 mg/kg). Intraperitoneal treatment with fimasartan (5 or 10 mg/kg/day) was initiated on day two after methotrexate injection and continued for seven consecutive days. Methotrexate significantly increased serum urea, creatinine, and NGAL concentrations. It al
... Show More