A nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN nanocages could be improved without additional expensive structural manipulations. After the NT had been absorbed into the nanocage, UV–Vis spectrum analysis revealed that the transmission wavelength shifted significantly toward 390.07 nm. Hence, a redshift occurs when the NT molecule gets near the B24N24 nanocage. According to the present study model, B24N24 nanocages are possibly promising devices for NT sensors based on their electronic and structural properties.
As Alkaloids known for their pharmaceutical importance; this research included the extraction of crude alkaloids of three plants (Zingiber officinale Roscoe., Thymus vulgaris L. and Acacia arabica L.) and evaluate their activity as coagulant agent by using three degraded concentrations of each plant extract and tested them on lab mice through the observation of the variations in bleeding time (BT), clotting time (CT) and platelet count. The results revealed differences in the percentage of alkaloids in the plants under the study; Z. officinale extract was the higher one followed by T. vulgaris and A. arabica respectively. Z. officinale extract was also the most effective plant as coagulant factor than other two plants as it decreased bot
... Show MoreThe dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the
... Show MoreBackground: With the increase in composite material use in posterior teeth, the concerns about the polymerization shrinkage has increased with the concerns about the formation of marginal gaps in the oral cavity environment. New generation of adhesives called universal adhesive have been introduced to the market in order to reduce the technique sensitive bonding procedures to give the advantage of using the bonding system in any etching protocol without compromising the bonding strength. The aim of the study was to study marginal adaptation of two universal adhesives (Single bondâ„¢ Universal and Prime and Bond elect) using 3 etching techniques under thermal cycling aging. Materials and Methods: Forty-eight sound maxillary first premola
... Show MoreIn this paper, a new class of harmonic univalent functions was defined by the differential operator. We obtained some geometric properties, such as the coefficient estimates, convex combination, extreme points, and convolution (Hadamard product), which are required
Reflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the
... Show MoreReflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the
... Show More