In the present study, an attempt has been to develop a new water quality index (WQI) method that depends on the Iraqi specifications for drinking water (IQS 417, 2009) to assess the validity of the Euphrates River for drinking by classifying the quality of the river water at different stations along its entire reach inside the Iraqi lands. The proposed classifications by this method are: Excellent, Good, Acceptable, Poor, and Very poor. Eight water quality parameters have been selected to represent the quality of the river water these are: Ion Hydrogen Concentration (pH), Calcium (Ca), Magnesium (Mg), Sodium (Na), Chloride (Cl), Sulphate (SO_4), Nitrate (NO_3), and Total Dissolved Solids (TDS). The variation of the water quality parameters along the river have been represented by graphs using Excel.2013 software. The results revealed that the quality of the Euphrates River ranges from “Good” to “Poor”, it enters the Iraqi borders with “Good” water quality and gradually its quality begins to decrease after it receives pollution from many sources such as domestic sewage and different industrial effluents until its quality becomes “Poor” according to the proposed classification. Finally the proposed WQI can be used as a tool to assess the quality of the river with both place and time.
Iraqi provinces suffer many of the environmental problems, appear explained these problems in the city of Basra, Basra, the largest province and is among Iraq's provinces in the annexation of oil fields, which is experiencing an oil production operations of large, it suffers from the burning of gas associated with oil extraction resulting in the emission severe gas process including toxic hydrogen sulfide gas (h2S) and oxides of carbon, sulfur and nitrogen in addition to the release of toxic metal elements such as mercury, arsenic, vanadium, which caused the man many serious diseases. , And perhaps one of the most important of these problems are worsening air quality and increasing cases of air pollution and the deterioration of the qual
... Show MoreIn this study water quality index (WQI) was calculated to classify the flowing water in the Tigris River in Baghdad city. GIS was used to develop colored water quality maps indicating the classification of the river for drinking water purposes. Water quality parameters including: Turbidity, pH, Alkalinity, Total hardness, Calcium, Magnesium, Iron, Chloride, Sulfate, Nitrite, Nitrate, Ammonia, Orthophosphate and Total dissolved solids were used for WQI determination. These parameters were recorded at the intakes of the WTPs in Baghdad for the period 2004 to 2011. The results from the annual average WQI analysis classified the Tigris River very poor to polluted at the north of Baghdad (Alkarkh WTP) while it was very poor to very polluted in t
... Show MoreIn this research, the water quality of the potable water network in
Al-Shuala Baghdad city were evaluated and compare them with the
Iraqi standards (IQS) for drinking water and World Health
Organization standards (WHO), then water quality index (WQI) were
calculator: pH, heavy metals (lead, cadmium and iron), chlorides,
total hardness, turbidity, dissolved oxygen, total dissolved solid and
electrical conductivity. Water samples are collected weekly during
the period from February 2015 to April 2015 from ten sites. Results
show that the chlorides, total dissolved solid and electrical
conductivity less than acceptable limit of standards, but total
hardness and heavy metals in some samples higher than acceptabl
Water is an essential aspect of life and important in evolution. Recently the potable water quality topic has received much attention. The study aims to determine drinking water quality in Al-Najaf City by collecting samples throughout Al-Najaf city and comparing the results with the Iraqi guidelines (IQS 417) and World Health Organization (WHO) guidelines, as well as to calculate the WQI. Samples were tested in the laboratory between December 2021 and June 2022. The results showed that multiple parameters exceeded the allowable limits during both testing periods; during winter months, the results of TDS and turbidity exceeded the upper limits in multiple locations. Total hardness values also
... Show MoreThe multimetric Phytoplankton Index of Biological Integrity (P-IBI) was applied throughout Rostov on Don city (Russia) on 8 Locations in Don River from April – October 2019. The P-IBI is composed from seven metrics: Species Richness Index (SRI), Density of Phytoplankton and total biomass of phytoplankton and Relative Abundance (RA) for blue-green Algae, Green Algae, Bacillariophyceae and Euglenaphyceae Algae. The average P-IBI values fell within the range of (45.09-52.4). Therefore, water throughout the entire study area was characterized by the equally "poor" quality. Negative points of anthropogenic impact detected at the stations are: Above the city of Rostov-on-Don (1 km, higher duct Aksai) was 38.57 i
... Show MoreThe assessment of a river water’ quality is an essential procedure of monitor programs and isused to collect basic environmental data. The management of integrated water resources in asustainable method is also necessary to allow future generations to meet their water needs. Themain objective of this research is to assess the effect of the Diyala River on Tigris River waterquality using Geographic Information System (GIS) technique. Water samples have beencollected monthly from November 2017 to April 2018 from four selected locations in Tigris andDiyala Rivers using the grab sampling method. Fourteen parameters were studied which areTurbidity, pH, Dissolved Oxygen, Biological Oxygen Demand, Electrical Conductivity, TotalDissolved Solids,
... Show MoreTigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and
... Show More