Preferred Language
Articles
/
nhilXJYBVTCNdQwCb4MO
Utilizing Machine Learning Techniques to Predict University Students' Digital Competence
...Show More Authors

Given the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University of Baghdad in its colleges with scientific and human specializations. To measure the level of DC, a questionnaire was applied as a data collection tool to a sample of 400 male and female students, distributed based on gender and academic specialization. The results showed that the sample students did not have high DC. Their possession of DC related to AI applications and systems was to a moderate degree. The results indicated that there were differences in the responses of the study sample members due to the gender variable and the specialization variable, in favor of the female students with scientific specialization.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Image And Graphics
Normalized-UNet Segmentation for COVID-19 Utilizing an Encoder-Decoder Connection Layer Block
...Show More Authors

The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Eurasian Journal Of Biosciences
Utilizing remote sensing for studying Al-Saadya Marsh in the period 1987-2017
...Show More Authors

The marshes are one of the important environmental features affecting human and animal systems, so the studying of changes they undergo is one of the important topics. This study is concerned with the changes occurring in the Al Saadya marsh for the period from 1987 to 2017 exclusively in the winter season (the marshes’ revival season in Iraq revive). In order to inspect the changes in this marsh, we choose 7 years to cover the study period as a criterion years, namely 1987, 1990, 1995, 2000, 2007, 2014 and 2017. The “Maximum Likelihood” classifier was used to separate the stacked land cover features, where the minimum overall accuracy ratio that recorded for all years of study was 96%. The results revealed that Al-Saadya marsh went t

... Show More
Publication Date
Fri Aug 12 2022
Journal Name
Future Internet
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr

... Show More
View Publication Preview PDF
Scopus (37)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Sat Jun 28 2025
Journal Name
Al-kitab Journal For Human Sciences (kjhs)
University Education Administration in Achieving Sustainable Environmental Development
...Show More Authors

The aim of the research is to identify the role of university education management in achieving sustainable environmental development.

View Publication
Publication Date
Thu Sep 15 2022
Journal Name
Knowledge And Information Systems
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
A study Some Technical Indicators of the Local Designed Machine
...Show More Authors
Abstract<p>The effect of compound machine on wheat/ AlNoor cultivar was studied based on some technical indicators. were tested under three speeds ( 2.541, 3.433 and 4.091km.hr<sup>-1</sup>) and three tillage depths (14, 16 and 18cm). The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the 2.541km.hr<sup>-1</sup> practical speed was significantly better than other two speed in all studied conditions. Except for the FC, which achieved the best results with the third speed 4.091 km.hr<sup>-1</sup>. mechanical parameters, plant growth parameters and yield and growth parameters. The 1</p> ... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed May 01 2024
Journal Name
Scientific Visualization
Shadow Detection and Elimination for Robot and Machine Vision Applications
...Show More Authors

Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Sat Oct 31 2020
Journal Name
Eastern-european Journal Of Enterprise Technologies
Design and development of high-accuracy machine for wire bending
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref