Preferred Language
Articles
/
nhilXJYBVTCNdQwCb4MO
Utilizing Machine Learning Techniques to Predict University Students' Digital Competence
...Show More Authors

Given the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University of Baghdad in its colleges with scientific and human specializations. To measure the level of DC, a questionnaire was applied as a data collection tool to a sample of 400 male and female students, distributed based on gender and academic specialization. The results showed that the sample students did not have high DC. Their possession of DC related to AI applications and systems was to a moderate degree. The results indicated that there were differences in the responses of the study sample members due to the gender variable and the specialization variable, in favor of the female students with scientific specialization.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (4)
Scopus Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
نسق
Problems and Difficulties Faced by Iraqi University Students in Employing Distance Learning
...Show More Authors

Publication Date
Tue Jul 11 2023
Journal Name
Journal Of Educational And Psychological Researches
Psychological stability and its relationship to Integration University and spiritual intelligence among University students
...Show More Authors

The current research aimed to identify psychological stability and its relationship to university integration and spiritual intelligence among university students. The research sample consisted of (158) students from the College of Education - Al-Mustansiriya University.

A scale was applied: psychological stability, university integration, and spiritual intelligence,   and by using the (Pearson) correlation coefficient, and the t-test, the results showed: the sample members enjoy psychological stability, university integration, and spiritual intelligence, and there is a positive, statistically significant correlation between the research variables, and the results resulted in some recommendations and proposals.

View Publication Preview PDF
Publication Date
Mon Feb 13 2023
Journal Name
Journal Of Educational And Psychological Researches
Prosoical Behavior and Its Relationship to Openness to Experience among University Students
...Show More Authors

The aim of the present study is to identify the level of prosoical behavior of Baghdad University's students and to recognize the differences between male and female students. Moreover, it also aims to identify the level of openness to experience for these students. A random sample of (123) students has been selected; 77 males and 46 females. Two scales have been used in the study. The Prosocialness scale for adults by Caprara. Et al (2005) has been translated into the Arabic language and relies on four types of actions (Helping, Sharing, Taking care, and feeling Empathetic with others) and the other scale is the Openness to Experience Scale, which is one of the Big Five Inventory by John and Srivastava (1999). The main results showed a

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Bio Web Of Conferences
Forecasting Cryptocurrency Market Trends with Machine Learning and Deep Learning
...Show More Authors

Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jan 01 2010
Journal Name
Journal Of The Sixth Conference Of The Faculty Of Languages
Utilizing Computers for Developing Students Skills
...Show More Authors

NAA Mustafa, Journal of the Sixth Conference of the Faculty of Languages, 2010

View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes On Data Engineering And Communications Technologies
Utilizing Deep Learning Technique for Arabic Image Captioning
...Show More Authors

View Publication
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Journal Of Educational And Psychological Researches
Teaching techniques due to the Brain-based learning theory among math teachers
...Show More Authors

The purpose of the study is to identify the teaching techniques that mathematics' teachers use due to the Brain-based learning theory. The sample is composed of (90) teacher: (50) male, (40) female. The results have shown no significant differences between male and female responses' mean. Additionally, through the observation of author, he found a lack of using Brain-based learning techniques. Thus, the researcher recommend that it is necessary to involve teachers in remedial courses to enhance their ability to create a classroom that raise up brain-based learning skills.  

View Publication Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref