Background: Quickly dissolved oral films are a widely accepted method of delivering drugs and help patients adhere to treatment regimens. Nanosuspensions (NS) are colloidal dispersions of drug particles with a submicron size, and their large surface area enhances the solubility and dissolution of low-water-soluble drugs. Febuxostat (FXT) is a non-purine xanthine oxidase inhibitor with a low dissolution rate that limits its absorption. Objective: To develop fast-dissolving oral films (FDOFs) containing FXT NS and convert NS into solid dosage forms to ease administration and accelerate drug release. Methods: FXT NS was prepared using Soluplus as a stabilizer and Tween80 as a co-stabilizer through an anti-solvent precipitation technique. We prepared FDOFs using a solvent casting method, utilizing hydrophilic polymers like pullulan, polyvinyl alcohol (PVA), gelatin, and plasticizers like polyethylene glycol (PEG400) and glycerin. The study assessed the film's thickness, weight, folding endurance, drug content, disintegration time, and drug release. We validated the drug's compatibility using FTIR, and conducted a crystallinity study using DSC and X-ray powder diffraction. Results: F4 was the optimized formula prepared using PVA and PEG400. In just three minutes, the F4 dissolution rate increased significantly (99.63% vs. 11.23%) compared to the FXT ordinary film. Also, it had good mechanical properties. Conclusions: FXT NS were successfully loaded into FDOFs with accepted properties.
A Schiff base ligand (L) was synthesized via condensation of N-( 1-naphthyl) ethylenediamine dihydrochloride with phthalaldehyde. The ligand was characterized by FT-IR, UV–Vis, 1H NMR, mass spectrometry, and elemental analysis (C, H, N). Five metal complexes (Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)) were prepared with the ligand in a 1:1 (M:L) ratio using an aqueous ethanol solution. The complexes were characterized by FT-IR, UV–Vis, mass spectrometry, and elemental analysis (C, H, N). Additionally, 1H NMR spectroscopy was employed for Cd(II) complex. Antimicrobial activity of the ligand and its metal complexes against pathogenic bacteria (K. pneumoniae, E. coli, S. aureus, and S. epidermidis) and fungus (C. albicans) were evaluated
... Show MoreA Schiff base ligand (L) was synthesized via condensation of
The present study deals with the synthesis of four different azo-azomethine derivatives; this is done by two steps; the first step is diazotization of sulfonamides (sulfanilamide, sulfacetamide, sulfamethoxazole, and sulfadiazine) separately, followed by the second step; the coupling reaction of diazotized compounds with isatin bis-Schiff base named 3-((4-nitrobenzylidene) hydrazono)indolin-2-one. The later one (bis-Schiff base) was synthesized by the reaction of 3-hydrazono-indolin-2-one with p-nitrobenzaldehyde. The chemical structures of newly synthesized compounds were approved on the basis of their FTIR, 1H-NMR, and CHNS elemental analysis data results. The synthesized azo compounds were tested in vitro for their antimicrobial potentia
... Show MoreA new ligand (H4L) and its complexes with (CoII, NiII, CuII and PdII). This ligand was prepared in two steps, in the first step a solution of terephthaldehyde in methanol reacted under refluxe with 1,2-phenylenediamine to give precursore compound which reacted in the second step with 2,4- dihydroxybenzaldehyde to give the ligand. The complexes were synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods [FT-IR, UV-vis, 1HNMR, HPLC and atomic absorption], chloride contant in addition to conductivity measurement. The stability constant K and Gibbs free energy ∆G were calculated for [[Ni2(H2L)Cl2], [Cu2(H2L)Cl2] complexes using spectrophoto
... Show MoreSynthesis of 2-mercaptobenzothiazole (A1) is performed from the reaction of o-aminothiophenol and carbon disulfide CS2 in ethanol under basic condition. Compound (A1) is reacted with chloro acetyl chloride to give compound (A2). Hydrazide acid compound (A3) is obtained from the reaction of compound (A2) with hydrazine hydrate in ethanol under reflux in the presence of glacial acetic acid .The reaction of hydrazide acid compound (A3) with ethyl acetoacetate gives pyrazole compound (A4). The new hydrazone compound (A5) was prepared from the reaction of compound (A3) with benzaldehyde. Reaction of compound
... Show MoreBackground: Pelvic masses are common in women & can present at any age of woman life, it could be benign or malignant mass and may originate from gynecological organs like cervix, uterus, uterine adnexia, or from other pelvic organs like intestine, bladder, ureters, skeletal muscle, and bone.Objective: We attempted to determine the increasing of platelet counts(> 450.000 /micro liter) and CA125serum level (> 35 U/mL) as useful tools for predicting and confirming malignancy in gynecological pelvic mass.Patients and methods: A prospective unmatched hospital based case-control study carried out at Baghdad Teaching Hospital, about 126 women were enrolled in our study, divided into two groups 60 women were control group (free o
... Show MoreNystatin is the drug of choice for treatment of cutaneous fungal infections with main disadvantage that is the need for multiple applications to achieve complete eradication which may reduce patient compliance. Microparticles offer a solution for such issue as they are one of sustained release preparations that achieve slow release of drug over an extended period of time. The objectives of this study were to fabricate nystatin-loaded chitosan microparticles with the ultimate goal of prolonging drug release and to analyze the influence of polymer concentration on various properties of microparticles. Microparticles were prepared by chemical cross-linking method using glutaraldehyde as cross-linking agent. Five formulas, namely N1C1, N1C2,
... Show More