Multi-carrier direct sequence code division multiple access (MC-DS-CDMA) has emerged recently as a promising candidate for the next generation broadband mobile networks. Multipath fading channels have a severe effect on the performance of wireless communication systems even those systems that exhibit efficient bandwidth, like orthogonal frequency division multiplexing (OFDM) and MC-DS-CDMA; there is always a need for developments in the realisation of these systems as well as efficient channel estimation and equalisation methods to enable these systems to reach their maximum performance. A novel MC-DS-CDMA transceiver based on the Radon-based OFDM, which was recently proposed as a new technique in the realisation of OFDM systems, will be used here as a basic building block in the design of MC-DS-CDMA transceiver to increase the orthogonality against the multipath frequency selective fading channels. Simulation results are provided to demonstrate the significant gains in performance and simplicity due to the proposed techniques. Copyright © 2010 Inderscience Enterprises Ltd.
The idea of the paper is to consolidate Mahgoub transform and variational iteration method (MTVIM) to solve fractional delay differential equations (FDDEs). The fractional derivative was in Caputo sense. The convergences of approximate solutions to exact solution were quick. The MTVIM is characterized by ease of application in various problems and is capable of simplifying the size of computational operations. Several non-linear (FDDEs) were analytically solved as illustrative examples and the results were compared numerically. The results for accentuating the efficiency, performance, and activity of suggested method were shown by comparisons with Adomian Decomposition Method (ADM), Laplace Adomian Decompos
... Show MoreIn this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
In this research, an unknown space-dependent force function in the wave equation is studied. This is a natural continuation of [1] and chapter 2 of [2] and [3], where the finite difference method (FDM)/boundary element method (BEM), with the separation of variables method, were considered. Additional data are given by the one end displacement measurement. Moreover, it is a continuation of [3], with exchanging the boundary condition, where are extra data, by the initial condition. This is an ill-posed inverse force problem for linear hyperbolic equation. Therefore, in order to stabilize the solution, a zeroth-order Tikhonov regularization method is provided. To assess the accuracy, the minimum error between
... Show MoreThe approximate solution of a nonlinear parabolic boundary value problem with variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time variable. The problem is reduced to solve a Galerkin nonlinear algebraic system (NLAS), which is solved by applying the predictor and the corrector method (PCM), which transforms the NLAS into a Galerkin linear algebraic system (LAS). This LAS is solved once using the Cholesky technique (CHT) as it appears in the MATLAB package and once again using the General Cholesky Reduction Order Technique (GCHROT), the GCHROT is employed here at first time to play an important role for saving a massive time. Illustrative
... Show MoreThe presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
This paper introduces the Multistep Modified Reduced Differential Transform Method (MMRDTM). It is applied to approximate the solution for Nonlinear Schrodinger Equations (NLSEs) of power law nonlinearity. The proposed method has some advantages. An analytical approximation can be generated in a fast converging series by applying the proposed approach. On top of that, the number of computed terms is also significantly reduced. Compared to the RDTM, the nonlinear term in this method is replaced by related Adomian polynomials prior to the implementation of a multistep approach. As a consequence, only a smaller number of NLSE computed terms are required in the attained approximation. Moreover, the approximation also converges rapidly over a
... Show MoreThe work in this paper focuses on solving numerically and analytically a nonlinear social epidemic model that represents an initial value problem of ordinary differential equations. A recent moking habit model from Spain is applied and studied here. The accuracy and convergence of the numerical and approximation results are investigated for various methods; for example, Adomian decomposition, variation iteration, Finite difference and Runge-Kutta. The discussion of the present results has been tabulated and graphed. Finally, the comparison between the analytic and numerical solutions from the period 2006-2009 has been obtained by absolute and difference measure error.
In Australia, most of the existing buildings were designed before the release of the Australian standard for earthquake actions in 2007. Therefore, many existing buildings in Australia lack adequate seismic design, and their seismic performance must be assessed. The recent earthquake that struck Mansfield, Victoria near Melbourne elevated the need to produce fragility curves for existing reinforced concrete (RC) buildings in Australia. Fragility curves are frequently utilized to assess buildings’ seismic performance and it is defined as the demand probability surpassing capacity at a given intensity level. Numerous factors can influence the results of the fragility assessment of RC buildings. Among the most important factors that can affe
... Show MoreThis study includes the preparation of the ferrite nanoparticles CuxCe0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) using the sol-gel (auto combustion) method, and citric acid was used as a fuel for combustion. The results of the tests conducted by X-ray diffraction (XRD), emitting-field scanning electron microscopy (FE-SEM), energy-dispersive X-ray analyzer (EDX), and Vibration Sample Magnetic Device (VSM) showed that the compound has a face-centered cubic structure, and the lattice constant is increased with increasing Cu ion. On the other hand, the compound has apparent porosity and spherical particles, and t
... Show MoreThis paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important