In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
In this paper we introduce G-Rad-lifting module as aproper generalization of lifting module, some properties of this type of modules are investigated. We prove that if M is G-Rad- lifting and
, then
, and
are G-Rad- lifting, hence we Conclude the direct summand of G-Rad- lifting is also G-Rad- lifting. Also we prove that if M is a duo module with
and
are G- Rad- lifting then M is G-Rad- lifting.
Let R be any ring with identity, and let M be a unitary left R-module. A submodule K of M is called generalized coessential submodule of N in M, if Rad( ). A module M is called generalized hollow-lifting module, if every submodule N of M with is a hollow module, has a generalized coessential submodule of N in M that is a direct summand of M. In this paper, we study some properties of this type of modules.
Let be an associative ring with identity and let be a unitary left -module. Let be a non-zero submodule of .We say that is a semi- - hollow module if for every submodule of such that is a semi- - small submodule ( ). In addition, we say that is a semi- - lifting module if for every submodule of , there exists a direct summand of and such that
The main purpose of this work was to develop the properties of these classes of module.
An R-module M is called ET-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that T⊆X+K if and only if T⊆D+K, for every essential submodule K of M and T M. Also, let T, X and Y be submodules of a module M , then we say that Y is ET-weak supplemented of X in M if T⊆X+Y and (X⋂Y M. Also, we say that M is ET-weak supplemented module if each submodule of M has an ET-weak supplement in M. We give many characterizations of the ET-H-supplemented module and the ET-weak supplement. Also, we give the relation between the ET-H-supplemented and ET-lifting modules, along with the relationship between the ET weak -supplemented and ET-lifting modules.
Let R be an associative ring with identity. An R-module M is called generalized
amply cofinitely supplemented module if every cofinite submodule of M has an
ample generalized supplement in M. In this paper we proved some new results about
this conc- ept.
In this paper, the problem of developing turbulent flow in rectangular duct is investigated by obtaining numerical results of the velocity profiles in duct by using large eddy simulation model in two dimensions with different Reynolds numbers, filter equations and mesh sizes. Reynolds numbers range from (11,000) to (110,000) for velocities (1 m/sec) to (50 m/sec) with (56×56), (76×76) and (96×96) mesh sizes with different filter equations. The numerical results of the large eddy simulation model are compared with k-ε model and analytic velocity distribution and validated with experimental data of other researcher. The large eddy simulation model has a good agreement with experimental data for high Reynolds number with the first, seco
... Show MoreWe presented here a 65years old lady with an unusual presentation of a large epigastric hernia of twenty years duration .The swelling was occupying all the right hypochondrial region .The diagnosis was made on r^E^a-operative identification of the defect in the linea alba which wassutured after removal of the hernial sac and its contents .The postoperative course was uneventful and the patient remained with no complications or recurrence for more than two years follow up.
This paper presents a hierarchical model of localized company effective when is used in a university campus or site. To highlight the standard criteria for each layer of the model and to prove the positive aspects of this model is the best in use and make the Dell Network as case of study. Through the case of study it has been shown that the expansion of the on-site network does not affect services or bandwidth.