In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,ï) there exists a submodule X of ï such that f (N) ïƒ X ≈ M, where ï is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in ï embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N. Moreover, we generalize some properties of weakly N-injectiv
... Show MoreLet Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if,
Let R be a commutative ring with unity .M an R-Module. M is called coprime module (dual notion of prime module) if ann M =ann M/N for every proper submodule N of M In this paper we study coprime modules we give many basic properties of this concept. Also we give many characterization of it under certain of module.
Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N of an R-module M is called semiessential if , 0  pN for all nonzero prime submodules P of M .
Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.
The main objective of this thesis is to study new concepts (up to our knowledge) which are P-rational submodules, P-polyform and fully polyform modules. We studied a special type of rational submodule, called the P-rational submodule. A submodule N of an R-module M is called P-rational (Simply, N≤_prM), if N is pure and Hom_R (M/N,E(M))=0 where E(M) is the injective hull of M. Many properties of the P-rational submodules were investigated, and various characteristics were given and discussed that are analogous to the results which are known in the concept of the rational submodule. We used a P-rational submodule to define a P-polyform module which is contained properly in the polyform module. An R-module M is called P-polyform if every es
... Show MoreLet R be a commutative ring with identity . In this paper we study the concepts of essentially quasi-invertible submodules and essentially quasi-Dedekind modules as a generalization of quasi-invertible submodules and quasi-Dedekind modules . Among the results that we obtain is the following : M is an essentially quasi-Dedekind module if and only if M is aK-nonsingular module,where a module M is K-nonsingular if, for each , Kerf ≤e M implies f = 0 .
The goal of this discussion is to study the twigged of pure-small (pr-small) sub- moduleof a module W as recirculation of a small sub-module, and we give some basic idiosyncrasy and instances of this kind of sub-module. Also, we give the acquaint of pure radical of a module W (pr-radical) with peculiarities.
A new generalizations of coretractable modules are introduced where a module is called t-essentially (weakly t-essentially) coretractable if for all proper submodule of , there exists f End( ), f( )=0 and Imf tes (Im f + tes ). Some basic properties are studied and many relationships between these classes and other related one are presented.
The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.