There are many aims of this book: The first aim is to develop a model equation that describes the spread of contamination through soils which can be used to determine the rate of environmental contamination by estimate the concentration of heavy metals (HMs) in soil. The developed model equation can be considered as a good representation for a problem of environmental contamination. The second aim of this work is to design two feed forward neural networks (FFNN) as an alternative accurate technique to determine the rate of environmental contamination which can be used to solve the model equation. The first network is to simulate the soil parameters which can be used as input data in the second suggested network, while the second network simulates to estimate the concentration of heavy metals. The third aim is to develop a conceptual theory of training stage of neural networks from the perspective of functional analysis and optimization methods. Within this formulation, learning means to solve a variational problem by minimizing a performance function associated to the neural network. The choice of the objective functional depends on the particular application. On the other side, we suggest modification of the performance function to improve the generalization of the suggested networks and to treat the early stopping and local minima problems. The fourth aim is to compare the performance of aforementioned algorithms with regard to predicting ability. Then applied the suggested technique to estimate the concentration of heavy metals such as: Copper(Cu), Lead(Pb), Cadmium(Cd), Cobalt(Co), Zinc(Zn) and Nickel(Ni) in Baghdad soils. First, sixty four soil samples were selected from a phytoremediated contaminated site located in some zones in Baghdad city (residential, industrial, commercial, agricultural and main roads). Second, a series of measurements were performed on the soil samples and analyzed measuring of concentrations for heavy metals using devices such as : Atomic Absorption Spectrophotometer (AAS), X-Ray Fluorescence (XRF) and Inductively Coupled Plasma-Mass Spectrometry (ICP- MS) to get initial concentrations for those heavy metals. Third, simulate and train the suggested networks to get the concentration of heavy metals. The performance of the suggested networks was compared with the traditional laboratory inspecting using the training and test data sets. The results of this book show that the suggested networks trained on experimental measurements can be successfully applied to the rapid and accuracy estimation of concentration of heavy metals. Finally, we suggest some methods for the treatment of contaminated soil by using some herbal plants
Numerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00
... Show MoreThe present work reports on the performance of three types of nanofiltration membranes in the removal of highly polluting and toxic lead (Pb2+) and cadmium (Cd2+) from single and binary salt aqueous solutions simulating real wastewaters. The effect of the operating variables (pH (5.5-6.5), types of NF membrane and initial ions concentration (10-250 ppm)) on the separation process and water flux was investigated. It was observed that the rejection efficiency increased with increasing pH of solution and decreasing the initial metal ions concentrations. While the flux decreased with increasing pH of solution and increasing initial metal ions concentrations. The maximum rejection of lead and cadmium ion
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreCoronavirus disease (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus, SARS-CoV-2. Infection with SARS-CoV-2 primarily occurs through binding to angiotensin-converting enzyme-2 (ACE2), which is abundantly expressed in various anatomical sites, including the nasopharynx, lungs, cardiovascular system, and gastrointestinal and genitourinary tracts. This study aimed to nurses' knowledge and protective health behaviors about prevention of covid-19 pandemic complications.
A descriptive design stud
As a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreAbstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreIn this study, a new adsorbent derived from sunflower husk powder and coated in CuO nanoparticles (CSFH) was investigated to evaluate the simultaneous adsorption of Levofloxacin (LEV), Meropenem (MER), and Tetracycline (TEC) from an aqueous solution. Significant improvements in the adsorption capacity of the sunflower husk were identified after the powder particles had been coated in CuO nanoparticles. Kinetic data were correlated using a pseudo-second-order model, and was successful for the three antibiotics. Moreover, high compatibility was identified between the LEV, MER, and TEC, isotherm data, and the Langmuir model, which produced a better fit to suit the isotherm curves. In addition, the spontaneous and exothermic nature of the adsor
... Show MoreThe modified Hummers method was applied to prepare graphene oxide (GO) from the graphite powder. Tin oxide nanoparticles with different loading (10-20 wt.%) supported on reduced graphene oxide were synthesized to evaluate the oxidative desulfurization efficiency. The catalyst was synthesized by the incipient wetness impregnation (IWI) technique. Different analysis methods like FT-IR, XRD, FESEM, AFM, and Brunauer-Emmett-Teller (BET) were utilized to characterize graphene oxide and catalysts. The XRD analysis showed that the average crystal size of graphene oxide was 6.05 nm. In addition, the FESEM results showed high metal oxide dispersions on the rGO. The EDX analysis shows the weight ratio of Sn is close to its theoretical weight.
... Show More