There are many aims of this book: The first aim is to develop a model equation that describes the spread of contamination through soils which can be used to determine the rate of environmental contamination by estimate the concentration of heavy metals (HMs) in soil. The developed model equation can be considered as a good representation for a problem of environmental contamination. The second aim of this work is to design two feed forward neural networks (FFNN) as an alternative accurate technique to determine the rate of environmental contamination which can be used to solve the model equation. The first network is to simulate the soil parameters which can be used as input data in the second suggested network, while the second network simulates to estimate the concentration of heavy metals. The third aim is to develop a conceptual theory of training stage of neural networks from the perspective of functional analysis and optimization methods. Within this formulation, learning means to solve a variational problem by minimizing a performance function associated to the neural network. The choice of the objective functional depends on the particular application. On the other side, we suggest modification of the performance function to improve the generalization of the suggested networks and to treat the early stopping and local minima problems. The fourth aim is to compare the performance of aforementioned algorithms with regard to predicting ability. Then applied the suggested technique to estimate the concentration of heavy metals such as: Copper(Cu), Lead(Pb), Cadmium(Cd), Cobalt(Co), Zinc(Zn) and Nickel(Ni) in Baghdad soils. First, sixty four soil samples were selected from a phytoremediated contaminated site located in some zones in Baghdad city (residential, industrial, commercial, agricultural and main roads). Second, a series of measurements were performed on the soil samples and analyzed measuring of concentrations for heavy metals using devices such as : Atomic Absorption Spectrophotometer (AAS), X-Ray Fluorescence (XRF) and Inductively Coupled Plasma-Mass Spectrometry (ICP- MS) to get initial concentrations for those heavy metals. Third, simulate and train the suggested networks to get the concentration of heavy metals. The performance of the suggested networks was compared with the traditional laboratory inspecting using the training and test data sets. The results of this book show that the suggested networks trained on experimental measurements can be successfully applied to the rapid and accuracy estimation of concentration of heavy metals. Finally, we suggest some methods for the treatment of contaminated soil by using some herbal plants
Delays occur commonly in construction projects. Assessing the impact of delay is sometimes a contentious
issue. Several delay analysis methods are available but no one method can be universally used over another in
all situations. The selection of the proper analysis method depends upon a variety of factors including
information available, time of analysis, capabilities of the methodology, and time, funds and effort allocated to the analysis. This paper presents computerized schedule analysis programmed that use daily windows analysis method as it recognized one of the most credible methods, and it is one of the few techniques much more likely to be accepted by courts than any other method. A simple case study has been implement
Image of landsate-7 taken by thematic mapper was used and classified using supervised method. Results of supervised classification indicated presence of nine land cover classes. Salt-soils class shows the highest reflectance value while water bodies' class shows the lowest values. Also the results indicated that soil properties show different effects on reflectance. There was a high significant positive relation of carbonate, gypsum, electric conductivity and silt content, while there was a week positive relation with sand and negative relation with organic matter, water content, bulk density and cataion exchange capacity.
Image of landsate-7 taken by thematic mapper was used and classified using supervised method. Results of supervised classification indicated presence of nine land cover classes. Salt-soils class shows the highest reflectance value while water bodies' class shows the lowest values. Also the results indicated that soil properties show different effects on reflectance. There was a high significant positive relation of carbonate, gypsum, electric conductivity and silt content, while there was a week positive relation with sand and negative relation with organic matter, water content, bulk density and cataion exchange capacity.
Radon is the most dangerous natural radioactive component affecting the human population, since it is a radioactive gas that results from the decomposition process of uranium deposits in soil, rocks, and water, and it is damaging both humans and the ecosystem. The radon concentrations and exhalation rate in soil samples from various locations were determined using a passive approach with a CR-39 (CR-39 is Columbia Resin #39; it is allyl diglycol carbonate C12H18O7) detector in Amiriya region in Baghdad Governorate. The average values of radon concentrations are ranged from 47.3 to 54.2 Bq·m−3. From the obtained results, we can conclude that the values of all studied locations are
The arrival of Russian President Vladimir Putin to power in the Russian Federation is an important factor in delineating a new approach to Russian policy towards regions that have great strategic importance affecting its national security. Therefore, NATO's progress eastward towards these regions prompts Russia to delineate a new strategy to confront this progress as well as preserving its control in the near neighboring regions represented by the countries of Eastern Europe, especially after the changes that occurred in those regions following the color revolutions that swept the region, such as the first application of this Russian policy in 2014, through the annexation of Crimea, and the latest military operations in Ukraine i
... Show More