In this study, Cr−Mo−N thin films with different Mo contents were synthesised via closed field unbalanced magnetron sputtering ion plating. The effects of Mo content on the microstructure, chemical bonding state, and optical properties of the prepared films were investigated by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and ultraviolet-visible spectrophotometry. XRD results determined the face centered cubic (fcc) structure of pure CrN film. The incorporation of molybdenum (Mo) in the CrN matrix was confirmed by both XRD and XPS analyses. The CrMoN coatings demonstrate various polycrystalline phases including CrN, γ-Mo2N, Cr with oxides layers of MoO3, CrO3, and Cr2O3. Microstructural results of the Cr-Mo-N coatings show that the grain size increased with an increase in Mo content due to the formation of MoN phase, in which the Mo atoms interact with N atoms around the grain boundaries of the CrN phase. XPS investigations confirmed the presence of Cr, Mo, N, C and O elements in the studied coatings. The optical results revealed that the synthesised coatings exhibit low reflection magnitudes in the visible region of the solar spectrum indicating good antireflection surfaces. Mo doped thin coatings improve the solar absorptance by ~76% in the wavelength range of 200–800 nm with a low thermal emittance of ~ 20% in the infrared range (up to 4000 nm). Furthermore, by applying density functional theory, the computational simulation provides similar trends as the experimental finding of absorption coefficient in the wavelength range.
six specimens of the Hg0.5Pb0.5Ba2Ca2Cu3-y
The current work concerns preparing cobalt manganese ferrite (Co0.2Mn0.8Fe2O4) and decorating it with polyaniline (PAni) for supercapacitor applications. The X-ray diffraction findings (XRD) manifested a broad peak of PAni and a cubic structure of cobalt manganese ferrite with crystal sizes between 21 nm. The pictures were taken with a field emission scanning electron microscope (FE-SEM), which evidenced that the PAni has nanofibers (NFs) structures, grain size 33 – 55 nm, according to the method of preparation, where the hydrothermal method was used. The magnetic measurements (VSM) that were conducted at room temperature showed that the samples had definite magnetic properties. Additionally, it was noted that the saturation magnetizatio
... Show MoreThis study includes the manufacture of four ternary alloys represented S60Se40-XPbX with weight ratios x = 0, 10, 20, and 30 by the melting point method. The components of each alloy were mixed separately, then placed in quartz ampoules and vacuumed out with a vacuum of roger that 10−4 Torr. The ampule was heated in two stages to avoid sudden dissipation and precipitation of selenium on the inner mass of the quartz tube. The ampoule was gradually heated and kept at 450°C for approximately 4 hours followed by 950°C for 10 hours.at a rate of 10 degrees Celsius, the temperature of the electric furnace
Theoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].
The existing investigation explains the consequence of irradiation of violet laser on the structure properties of MawsoniteCu6Fe2SnS8 [CFTS] thin films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser. when the received films were processed by continuous red laser (700 nm) with power (>1000mW) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time (0,30,45,60,75,90 min) respectively at room temperature.. The XRD diffraction gave polycrysta
... Show MoreThis study includes the preparation of the ferrite nanoparticles CuxCe0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) using the sol-gel (auto combustion) method, and citric acid was used as a fuel for combustion. The results of the tests conducted by X-ray diffraction (XRD), emitting-field scanning electron microscopy (FE-SEM), energy-dispersive X-ray analyzer (EDX), and Vibration Sample Magnetic Device (VSM) showed that the compound has a face-centered cubic structure, and the lattice constant is increased with increasing Cu ion. On the other hand, the compound has apparent porosity and spherical particles, and t
... Show More