In this study, Cr−Mo−N thin films with different Mo contents were synthesised via closed field unbalanced magnetron sputtering ion plating. The effects of Mo content on the microstructure, chemical bonding state, and optical properties of the prepared films were investigated by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, and ultraviolet-visible spectrophotometry. XRD results determined the face centered cubic (fcc) structure of pure CrN film. The incorporation of molybdenum (Mo) in the CrN matrix was confirmed by both XRD and XPS analyses. The CrMoN coatings demonstrate various polycrystalline phases including CrN, γ-Mo2N, Cr with oxides layers of MoO3, CrO3, and Cr2O3. Microstructural results of the Cr-Mo-N coatings show that the grain size increased with an increase in Mo content due to the formation of MoN phase, in which the Mo atoms interact with N atoms around the grain boundaries of the CrN phase. XPS investigations confirmed the presence of Cr, Mo, N, C and O elements in the studied coatings. The optical results revealed that the synthesised coatings exhibit low reflection magnitudes in the visible region of the solar spectrum indicating good antireflection surfaces. Mo doped thin coatings improve the solar absorptance by ~76% in the wavelength range of 200–800 nm with a low thermal emittance of ~ 20% in the infrared range (up to 4000 nm). Furthermore, by applying density functional theory, the computational simulation provides similar trends as the experimental finding of absorption coefficient in the wavelength range.
This paper examines the mechanical properties of a composite material made of modified Iraqi gypsum (juss) reinforced with polypropylene fibers. The modified juss was prepared by adding two percentages of cement (5, 10) %. Two percentages of polypropylene fibers were used, to reinforce the modified juss (1, 2) %. The water/dry compound ratio used was equal to 0.53%. The composite was evaluated based on compressive strength, flexural strengths, absorption percentage, density, acoustic impedance, ultra - pulse velocity, longitudinal shrinkage and setting time tests. The results indicated that the inclusion of cement on to juss increases the compressive strength, absorption percentage, density, acoustic impedance, ultra - pulse velocit
... Show MoreNo-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference mold
... Show MoreThe electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .
Background: Denture lining materials are widely used in prosthodontic treatment and management of traumatized oral mucosa. A contaminated prosthesis can provide a source of cross-contamination between patients and dental personnel as well as a cause for denture stomatitis. Therefore, denture disinfection has been recommended as an essential procedure for maintenance of a healthy oral mucosa. This study investigated the effect of SOLO disinfectant solution on some properties of different denture lining materials. Materials and methods: Three different solutions were used in this study; SOLO disinfectant solution, sodium hypochlorite solution, and water on three types of acrylic denture lining materials; hot cure, cold cure, and soft acrylic
... Show MoreA computational investigation has been carried out to describe synthesis optimization procedure of magnetic lenses. The research is concentrated on the determination of the inverse design of the symmetrical double polepiece magnetic lenses whose magnetic field distribution is already defined. Magnetic lenses field model well known in electron optics have been used as the axial magnetic field distribution. This field has been studied when the halfwidth is variable and the maximum magnetic flux density is kept constant. The importance of this research lies in the possibility of using the present synthesis optimization procedure for finding the polepieces design of symmetrical double polepiece magnetic lenses which have the best proje
... Show MoreThe thermal properties of four nematogenic Schiff’s bases, n-butyl-to-n-heptyl of bis (4-n-alkyloxybenzylidine)-2,3,5.6- tetramethyl-1, 4-phenylenediamine, have been studied. The transition temperatures and enthalpies of transition were examined by differential scanning calorimeter (DSC). Several correlations were carried out; those included the relations between transition temperatures, enthalpies and entropies of transition with increasing the
number of carbon atoms in the terminal alkyl chains. In addition, new regular relations were found between the ratio of the enthalpies and of the entropies, for noematic-isotropic transition and crystal-isotropic transition ( ΔΗÎ-i/AHC-I, ΔS
In this work, the optical properties of Cu2S with different thickness
(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolys
is method onto clean glass substrate heated at 283 oC ±2. The effect
of thickness on the optical properties of Cu2S has been studied. It
was found that the optical properties of the electronic transitions on
fundamental absorption edge were direct allowed and the value of the
optical energy gap of Cu2S (Eg) for direct transition decreased from
(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻ
respectively. Also it was found that the absorption coefficient is
increased with increasing of thicknesses. The optical constants such<
Additive aluminum powder to the polystyrene to prepare the composites Polystyrene– Aluminum.The samples were prepared by using mechanical compressed method at low pressure and a temperature 120°C. Measurements of absorbance and reflectance spectra were carried out by UV-Visible spectrophotometer , the effect of additive aluminum on the optical band gap Eop and optical constants ( refractive index n, extinction coefficient k ,dielectric constant ε and optical conductivity σop) were studied for the prepared composites . Results showed a decrease in the Eop with increasing perc
... Show More The Influence of annealing temperature on the optical properties of (CuInSe2) thin films was studied. Thermal evaporation in vacuum technique has been used for films deposited on glass substrates, these films were annealed in vacuum at (100C°, 200C°) for (2 hours). The optical properties were studied in the range (300-900) nm. The obtained results revealed a reduction in energy band gap with annealing temperature . optical parameters such as reflectance, refractive index, extinction coefficient, real and imaginary parts of the dielectric constant, skin depth and optical conductivity are investigated before and after annealing. It was found that all these parameters were affected by annealing temperature.