The work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing as well as doping with silver. Gas sensing measurements were carried out using NO2 as a gaseous species to be detected. The results showed that the electrical conductivity, density as well as mobility of charge carriers, and gas sensitivity were affected by the doping level and annealing treatment.
Random laser gain media is synthesized with different types of dye at the same concentration (1×10-3 M) as an active material and silicon dioxide NPs (silica SiO2) as scatter centers through the Sol-Gel technique. The prepared samples are tested with UV–Vis spectroscopy, Fluorescence Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Diffraction (EDX). The end result demonstrates that doped dyes with silica nanoparticles at a concentration of 0.0016 mol/ml have lower absorbance and higher fluorescence spectra than pure dyes. FESEM scans revealed that the morphology of nanocrystalline silica is clusters of nano-sized spherical particles in the range (25-67) nm. It is con
... Show MorePolluted water has been considered a critical issue nowadays, threatening the environment and lives of living creatures. Because of technological and industrial advancements, as well as increased social activities of humans in various countries, pollution sources have multiplied. To reduce the impact of this problem, many techniques have been developed in order to reach zero discharge pollution. In the last decade, graphene oxide (GO) - a member of the graphene nanomaterials family, has been the focus of many research efforts in the water treatment sector because of its extraordinary properties. This review highlights the research efforts conducted to investigate GO as a novel adsorbent for water treatment applications and recen
... Show MoreEnvironmental pollutions and resources depletion motivates scientific research to innovate technologies for sustainable productive systems. To develop gas sensing substance with optimized performance a perovskite compound of HoxFe1-x FeO3 (where x= 0, 0.01, 0.03 and 0.05) were prepared by standard solid state reaction technique. The crystal structure was studied by XRD, which confirmed the formation of polycrystalline orthorhombic structure with space group Pbnm type perovskite. The preferred crystal growth of the main peak was (211). The structural parameters were also calculated and it was found that the lattice constants and particle size increased with the Ho doping ratio. The electrical properties were studied using the Hall effect,
... Show MoreIn this study, graphene oxide (GO) and reduced graphene oxide were synthesized by pulsed Nd:YAG laser with a fundamental wavelength (1064 nm) focused on the pure graphite target which was immersed in distilled water. Different pulse energies were applied in two cases; with and without magnetic field. The synthesized GO and rGO nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) with and without magnetic field. The data show the presence of a magnetic field which illustrated increasing oxygen functional groups of GO. This caused a change in the morphology of the surface of GO, increasing crystallite size from 12.19 nm to 71.2
... Show MoreChitosan-schiff base with three different ratios of para-Dimethyl aminobenzaldehyde& chitosan Schiff base hydrogels have been prepared for controlled drug release study. The synthesized chitosan Schiff base and chitosan Schiff base hydrogel were characterized by FT-IR, UV-Visible, SEM, analysis. Swelling properties of the hydrogel were investigated at three different media pH (2, 7, 10). The swelling degree varied with the pH, amount of crosslinking agent glutaraldehyde and with the amount of paraDimethylaminobenzaldehyde for the hydrogels. All hydrogels were used for controlled drug release system. Aspirin was used as model drug, in three different buffer solution (2, 7, 10) as release media. The rate of release of drugs in the pH2 is m
... Show MoreObjective: Econazole nitrate (ECZ) is one of the triazole antifungal drugs with poor aqueous solubility and dissolution rate; there is a need for enhancement of solubility. Therefore; inclusion complexation with β cyclodextrin (βCD) was performed. Methods: In this study kneading method and co-evaporation method of preparation of inclusion complex between βCD and ECZ using two molar ratios of βCD. The solubility of these complexes in isotonic saline solution and distilled water was studied. Complexes prepared by kneading method were used for the preparation of different ophthalmic gel formulas using carbomer (CB) and sodium carboxymethylcellulose (sod CMC) as a gelling agent. The release profile and the rheological behaviour of the gel w
... Show MoreGas adsorption phenomenon on solid surface has been used as a mean in separation and purification of gas mixture depending on the difference in tendencies of each component in the gas mixture to be adsorbed on the solid surface according to its behaviour. This work concerns to study the possibilities to separate the gas mixture using adsorption-desorption phenomenon on activated carbon. The experimental results exhibit good separation factor at temperature of -40 .