Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers. In this research, we present an adopted approach based on convolutional neural networks to design a system for quality inspection with high level of accuracy and low cost. The system is designed using transfer learning to transfer layers from a previously trained model and a fully connected neural network to classify the product’s condition into healthy or damaged. Helical gears were used as the inspected object and three cameras with differing resolutions were used to evaluate the system with colored and grayscale images. Experimental results showed high accuracy levels with colored images and even higher accuracies with grayscale images at every resolution, emphasizing the ability to build an inspection system at low costs, ease of construction and automatic extraction of image features.
This research is a study of the difficulties of learning the Arabic language that faces Arabic language learners in the Kurdistan Region, by revealing its types and forms, which can be classified into two categories:
The first type has difficulties related to the educational system, the source of which is the Arabic language itself, the Arabic teacher or the learner studying the Arabic language or the educational curriculum, i.e. educational materials, or the educational process, i.e. the method used in teaching.
The second type: general difficulties related to the political aspect, the source of which is the policy of the Kurdistan Regional Government in marginalizing the Arabic language and replacing the forefront of th
... Show MoreIn light of the corona pandemic, educational institutions have moved to learning and teaching via the Internet and e-learning ,and this is considered a turning point in course of higher education in Iraq in particular and education in general, which generated a great challenge for educational institutions to achieve the highest possible levels in practices and processes to reach the highest quality of their outputs from graduate students to the labor market that auditing performance by adopting e-learning standards is one of the effective tools that help the management of educational institutions by providing information on the ex
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreCryptography is a method used to mask text based on any encryption method, and the authorized user only can decrypt and read this message. An intruder tried to attack in many manners to access the communication channel, like impersonating, non-repudiation, denial of services, modification of data, threatening confidentiality and breaking availability of services. The high electronic communications between people need to ensure that transactions remain confidential. Cryptography methods give the best solution to this problem. This paper proposed a new cryptography method based on Arabic words; this method is done based on two steps. Where the first step is binary encoding generation used t
... Show MoreIdentifying the total number of fruits on trees has long been of interest in agricultural crop estimation work. Yield prediction of fruits in practical environment is one of the hard and significant tasks to obtain better results in crop management system to achieve more productivity with regard to moderate cost. Utilized color vision in machine vision system to identify citrus fruits, and estimated yield information of the citrus grove in-real time. Fruit recognition algorithms based on color features to estimate the number of fruit. In the current research work, some low complexity and efficient image analysis approach was proposed to count yield fruits image in the natural scene. Semi automatic segmentation and yield calculation of fruit
... Show MoreToday with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned