Due to the lack of statistical researches in studying with existing (p) of Exogenous Input variables, and there contributed in time series phenomenon as a cause, yielding (q) of Output variables as a result in time series field, to form conceptual idea similar to the Classical Linear Regression that studies the relationship between dependent variable with explanatory variables. So highlight the importance of providing such research to a full analysis of this kind of phenomena important in consumer price inflation in Iraq. Were taken several variables influence and with a direct connection to the phenomenon and analyzed after treating the problem of outliers existence in the observations by (EM) approach, and expand the sample size (n=36) to be (n=51) to face the limitation of the data. After that was a comprehensive analysis taking into account the size of the new sample.
The aim of this research work is to study the effect of stabilizing gypseous soil, which covers
vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties
to be used as a base course layer replacing the traditional materials of coarse aggregate and broken
stones which are scarce at economical prices and hauling distances.
Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%,
medium curing cutback asphalt (MC-30), and hydrated lime are used in this study.
The conducted tests on untreated and treated gypseous soil with different percentages of medium
curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and o
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreIn this research, the use of natural materials like wool and cannabis as intermediate reinforcement for prosthetic limbs due to their comfort, affordability, and local availability was discussed. As part of this study on below-the-knee (BK) prosthetic sockets, two sets of samples were made using a vacuum method. These sets were made of natural fiber-reinforced polymer composites with lamination 80:20: group (Y) had 4 perlon, 1 wool 4 perlon, and group (G) had 4 perlon, 1 cannabis 4 perlon. The two groups were compared with a socket made of polypropylene. Tensile testing was used to determine the mechanical characteristics of the socket materials. The Y group has a yield stress of 17 MPs, an ultimate strength of 18.75 MPa, and an elastic
... Show MoreEnd of the twentieth century witnessed by the technological evolution Convergences between the visual arts aesthetic value and objective representation of the image in the composition of the design of the fabric of new insights and unconventional potential in atypical employment. It is through access to the designs of modern fabrics that address the employment picture footage included several scenes footage from the film, which focuses on research and analytical as a study to demonstrate the elements of the picture and the organization of its rules and how to functioning in the design of fabrics, Thus, it has identified the problem by asking the following: What are the elements of the picture footage and how the functioning of the struct
... Show MoreIn networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreBiodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–
... Show MoreWith the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev
... Show More