Artificial intelligence in cancer diagnosis: Opportunities and challenges
...Show More Authors
To investigate the activity and role of certain enzyme markers in 30 patients female with breast cancer (non-treated, treated, and treatment with recovered).The serum activity of enzyme tumor markers (ALP, GPT and GOT) of (30) patients with breast cancer, and (7) healthy control subjects by using statistical analysis: There is significant difference higher in activity of serum enzyme tumor markers (ALP, GPT, and GOT) in all patients as compared with healthy control
Objective:To Evaluate of Estradiol and Prolactin hormones levels for Breast Cancer women in
Baghdad City.
Methodology: The current study was conducted on 60 breast cancer women and 40 apparently
healthy subjects to evaluate the levels of estradiol and prolactin "hormones in the serum" of
({premenopausal & postmenopausal}) breast cancer and healthy controle women. Estradiol and
prolactin hormones estimated for all cases by using the IMMULITE 2000 instrument that performs
chemiluminescent immunoassays results are calculated for each sample.Data were analysed using
SPSS-18.data of two groups was comparison by the student's t-test.
Results: The results showed a non significant""(P>0.05) elevation in the –mean
Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreWhen soft tissue planning is important, usually, the Magnetic Resonance Imaging (MRI) is a medical imaging technique of selection. In this work, we show a modern method for automated diagnosis depending on a magnetic resonance images classification of the MRI. The presented technique has two main stages; features extraction and classification. We obtained the features corresponding to MRI images implementing Discrete Wavelet Transformation (DWT), inverse and forward, and textural properties, like rotation invariant texture features based on Gabor filtering, and evaluate the meaning of every
... Show MoreInterested in this research shed light on the reality of foreign trade to Iraq Who suffers from a marked deterioration due to poor economic diversification of the country And increase the degree of economic exposure , Which creates a state of extreme caution towards the question of accession to the (WTO) , As controls Iraq's foreign trade commodity , a president of one oil As well as the contribution of this item , and by a large formation in GDP , And that such a large and dangerous decline in the degree of economic diversification will create negative effects On overall economic activity components&
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreIn the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as a particles with low-density and diameter (5 mm) in a (9.2 cm) inner diameter with height (200 cm) of vertical perspex column. The effectiveness of gas velocity Ug , liquid velocity UL, liquid viscosity μL, and particle density ρs on bed porosity BP and solid holdups εg were determined. The bed porosity increases with "increasing gas velocity", "liquid velocity", and "liquid viscosity". Solid holdup decreases with increasing gas, liquid
... Show MoreHepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. Therefore, it is critical for researchers to understand molecular biology in greater depth. In several diseases including cancer, abnormal miRNA expression has been linked to apoptosis, proliferation, differentiation, and metastasis. Many miRNAs have been studied in relation to cancer, including miR-122, miR-223, and others. Hepatitis B and C viruses are the most important global risk factors for HCC. This study is intended to test whether serum miRNAs serve as a potential biomarker for both HCC and viral infections HBV and C. The expression of miRNA in 64 serum samples was analyzed by RT-qPCR. Compared to healthy volunteers, HCC patients' sera expre
... Show More