Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mobile vehicles. Several studies have tackled the task offloading problem in the VFC field. However, recent studies have not carefully addressed the transmission path to the destination node and did not consider the energy consumption of vehicles. This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives under deadline constraint by adopting a Multi-Objective Evolutionary Algorithm (MOEA). Road Side Units (RSUs) x-Vehicles Mutli-Objective Computation offloading method (RxV-MOC) is proposed, where an elite of vehicles are utilized as fog nodes for tasks execution and all vehicles in the system are utilized for tasks transmission. The well-known Dijkstra's algorithm is adopted to find the minimum path between each two nodes. The simulation results show that the RxV-MOC has reduced significantly the energy consumption and latency for the VFC system in comparison with First-Fit algorithm, Best-Fit algorithm, and the MOC method.
Accounting disclosure is the main means and effective tool for communicating business results to users in support of their decisions, especially those with thought and specialization from academics and professionals in the field of accounting and auditing about the importance of accounting disclosure and transparency in financial reports.
Contingent liabilities represent commitments based on the occurrence of one or more events in the future to confirm the value due, the party entitled to it, the maturity date, or to confirm the existence of the obligation itself, and therefore they should not be recognized as a contingent liability i
... Show MoreObjective: The evaluation of serum osteocalcin (OSN) for Iraqi infertile patients to see the effect of osteocalcin insufficiency, which may lead to a decreased level of testosterone production in males that may cause infertility. Methods: Forty two newly diagnosed infertile males age range (24–47) years and thirty two apparently healthy males as controls age range (25–58) years. Serum levels of testosterone (TEST), stimulating follicle hormone (FSH) and luteinizing hormone (LH), prolactin (PROL), osteocalcin OSN, and fasting blood sugar (FBS) were performed in both patients and controls. Estimation of serum OSN by Immulite1000 auto-analyzer, TEST, FSH, LH, PROL, and FBS by Immulite2000 auto-analyzer. Results: Infertile patients
... Show MoreThe right to property is one of the most fundamental rights enjoyed by individuals, and most national constitutions and laws, as well as international conventions, have to be respected and protected only in accordance with the economic and social development of the country (the so-called public benefit) and in return for just compensation. What is fair compensation?
A QR code is a type of barcode that can hold more information than the familiar kind scanned at checkouts around the world. The “QR” stands for “Quick Response”, a reference to the speed at which the large amounts of information they contain can be decoded by scanners. They are being widely used for advertising campaigns, linking to company websites, contest sign-up pages and online menus. In this paper, we propose an efficient module to extract QR code from background and solve problem of rotation in case of inaccurate image taken from mobile camera.
A total number of 68 water samples was revealed 20 isolates being Staphylococcus aureus. Irrigation water isolates represented 25% of isolates while wastewater 75%. all isolates were identified by morphological, microscopial, biochemical tests and VITEK®2 Compact. Bacterial isolates were subjected to 16 antibiotics, all irrigation water and wastewater isolates were resistant to penicillin while they were fully sensitive to Ciprofloxcin. Irrigation water isolates showed relatively greater multi-drug resistance than wastewater, wherein irrigation water isolates showed 100% multi-drug resistance while wastewater isolates showed 73.3% multi-drug resistance, indicating the ability of S. aureus MDR to move from one site to another, which means t
... Show MoreIn the present study, multi-walled carbon nanotubes (MWCNTs) with outside diameters of< 8 nm and 20−30 nm were covalently functionalized with β-Alanine using a novel synthesis procedure. The functionalization process was proved successful using Raman spectroscopy, FTIR, and TEM. Utilizing the two-step method with ultrasonication, the MWCNTs treated with β-Alanine (Ala-MWCNTs) with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% were dispersed in distilled water to prepare water-based nanofluids. The aqueous colloidal dispersions of pristine MWCNTs were unstable. While for Ala-MWCNTs and after> 50 days from preparation, higher colloidal stability was obtained up to relative concentration of 0.955 and 0.939 for the 0.075-wt% samp
... Show More
The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the