Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mobile vehicles. Several studies have tackled the task offloading problem in the VFC field. However, recent studies have not carefully addressed the transmission path to the destination node and did not consider the energy consumption of vehicles. This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives under deadline constraint by adopting a Multi-Objective Evolutionary Algorithm (MOEA). Road Side Units (RSUs) x-Vehicles Mutli-Objective Computation offloading method (RxV-MOC) is proposed, where an elite of vehicles are utilized as fog nodes for tasks execution and all vehicles in the system are utilized for tasks transmission. The well-known Dijkstra's algorithm is adopted to find the minimum path between each two nodes. The simulation results show that the RxV-MOC has reduced significantly the energy consumption and latency for the VFC system in comparison with First-Fit algorithm, Best-Fit algorithm, and the MOC method.
Background: Poly cystic ovary syndrome is a common disorder in women of reproductive age, it is associated with disturbance of reproductive, endocrine and metabolic functions. The pathophysiology of PCOS appears to be multifactorial and polygenic. Leptin seems to play an important role in pathophysiology of PCOS especially in women with BMI ≥25kg/m2. Objectives: To assess leptin level in both PCOS and healthy women and explore the relation to their body weight and body mass index. Patient and Methods: A total of 120 women were enrolled in this study, 60 women (50%) had PCOS (study group) and the reminder 60 women (50%) were healthy women and considered as control group. BMI was calculated first. Both groups were further sub
... Show MoreBackground: Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age with primary manifestations of infertility, menstrual dysfunction and clinical or biochemical hyperandrogenism (hirsutism, acne and elevated androgen). Adiponectin is the most abundant adipokine. It has insulin-sensitizing, anti-atherogenic, and antiinflammatory actions.Objective: Low adiponectin levels in women with PCOS have been largely attributed to obesity which is common among these patients. Therefore, the aim of this study was to measure adiponectin levels in normal weight women with PCOS and its contribution to development of disease.Subjects and Methods: Fifty two (52) women were included in this study with age ra
... Show MoreBackground: The prevalence of both obesity & diabetes are increasing all over the world & more in women. They have a negative impact not only on morbidity & mortality but also on quality of life.
Objectives: To assess the HRQoL with a specific comparison between obese & normal weight among wo
... Show MoreOne of the biomedical image problems is the appearance of the bubbles in the slide that could occur when air passes through the slide during the preparation process. These bubbles may complicate the process of analysing the histopathological images. The objective of this study is to remove the bubble noise from the histopathology images, and then predict the tissues that underlie it using the fuzzy controller in cases of remote pathological diagnosis. Fuzzy logic uses the linguistic definition to recognize the relationship between the input and the activity, rather than using difficult numerical equation. Mainly there are five parts, starting with accepting the image, passing through removing the bubbles, and ending with predict the tissues
... Show MoreCooperation spectrum sensing in cognitive radio networks has an analogy to a distributed decision in wireless sensor networks, where each sensor make local decision and those decision result are reported to a fusion center to give the final decision according to some fusion rules. In this paper the performance of cooperative spectrum sensing examines using new optimization strategy to find optimal weight and threshold curves that enables each secondary user senses the spectrum environment independently according to a floating threshold with respect to his local environment. Our proposed approach depends on proving the convexity of the famous optimization problem in cooperative spectrum sensing that stated maximizing the probability of detec
... Show MoreThe current research aims to provide a conceptual and applied frame on the subject of multi- level analysis in the research of business administration. The research tries to address some of the problems that befall the preparation of research and studies at the Arab level and local level, where the unity of theory and measurement and analysis, as well as clarify the various types of conceptual constructs and give researchers the ability to distinguish different models related to the level of analysis. On the other hand, this research provides an example of
... Show MoreModify Multi-Connect Architecture (MMCA) associative memory
The development of the internet of things (IoT) and the internet of robotics (IoR) are becoming more and more involved with our daily lives. It serves a variety of tasks some of them are essential to us. The main objective of SRR is to develop a surveillance system for detecting suspicious and targeted places for users without any loss of human life. This paper shows the design and implementation of a robotic surveillance platform for real-time monitoring with the help of image processing, which can explorer places of difficult access or high risk. The robotic live streaming is via two cameras, the first one is fixed straight on the road and the second one is dynamic with tilt-pan ability. All cameras have image processing capabilities t
... Show More