Preferred Language
Articles
/
nReFNY8BVTCNdQwC1GFZ
A Light Weight Multi-Objective Task Offloading Optimization for Vehicular Fog Computing
...Show More Authors

Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mobile vehicles. Several studies have tackled the task offloading problem in the VFC field. However, recent studies have not carefully addressed the transmission path to the destination node and did not consider the energy consumption of vehicles. This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives under deadline constraint by adopting a Multi-Objective Evolutionary Algorithm (MOEA). Road Side Units (RSUs) x-Vehicles Mutli-Objective Computation offloading method (RxV-MOC) is proposed, where an elite of vehicles are utilized as fog nodes for tasks execution and all vehicles in the system are utilized for tasks transmission. The well-known Dijkstra's algorithm is adopted to find the minimum path between each two nodes. The simulation results show that the RxV-MOC has reduced significantly the energy consumption and latency for the VFC system in comparison with First-Fit algorithm, Best-Fit algorithm, and the MOC method.

Scopus Crossref
View Publication
Publication Date
Tue Oct 16 2018
Journal Name
Springer Science And Business Media Llc
MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
...Show More Authors

Scopus (60)
Crossref (41)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Applied Soft Computing
A new evolutionary multi-objective community mining algorithm for signed networks
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
New Approach for Solving Multi – Objective Problems
...Show More Authors

  There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.

View Publication Preview PDF
Crossref
Publication Date
Mon Feb 14 2022
Journal Name
Iraqi Journal Of Science
A New Method for Solving Fully Fuzzy Multi-Objective Linear Programming Problems
...Show More Authors

In this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.

View Publication Preview PDF
Publication Date
Sat Mar 08 2025
Journal Name
International Journal Of Data And Network Science
Multi-objective of wind-driven optimization as feature selection and clustering to enhance text clustering
...Show More Authors

Text Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fusion: Practice And Applications
Optimizing Task Scheduling and Resource Allocation in Computing Environments using Metaheuristic Methods
...Show More Authors

Optimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiment

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Intelligent Task Scheduling Using Bat and Harmony Optimization
...Show More Authors

     Cloud computing describes computer services provided through the internet and includes a wide range of virtualization resources. Because cloud computing is made up of a sizable number of heterogeneous autonomous systems with an adaptable computational architecture, it has been widely adopted by many businesses. The scheduling and management of resource utilization, however, have become more difficult as a result of cloud computing. Task scheduling is crucial, and this procedure must schedule tasks on the  virtual machine while using the least amount of time possible. Utilizing an effective scheduling strategy enhances and expedites cloud computing services. Optimization techniques are used to resolve cloud scheduling problems.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Swarm And Evolutionary Computation
A new multi-objective evolutionary framework for community mining in dynamic social networks
...Show More Authors

View Publication
Scopus (23)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Heuristic Approach for Solving Multi-objective Scheduling Problems
...Show More Authors

    In this paper, we studied the scheduling of  jobs on a single machine.  Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
Developing a Predictive Model and Multi-Objective Optimization of a Photovoltaic/Thermal System Based on Energy and Exergy Analysis Using Response Surface Methodology
...Show More Authors

View Publication
Crossref (2)
Crossref