Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mobile vehicles. Several studies have tackled the task offloading problem in the VFC field. However, recent studies have not carefully addressed the transmission path to the destination node and did not consider the energy consumption of vehicles. This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives under deadline constraint by adopting a Multi-Objective Evolutionary Algorithm (MOEA). Road Side Units (RSUs) x-Vehicles Mutli-Objective Computation offloading method (RxV-MOC) is proposed, where an elite of vehicles are utilized as fog nodes for tasks execution and all vehicles in the system are utilized for tasks transmission. The well-known Dijkstra's algorithm is adopted to find the minimum path between each two nodes. The simulation results show that the RxV-MOC has reduced significantly the energy consumption and latency for the VFC system in comparison with First-Fit algorithm, Best-Fit algorithm, and the MOC method.
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThe necessary optimality conditions with Lagrange multipliers are studied and derived for a new class that includes the system of Caputo–Katugampola fractional derivatives to the optimal control problems with considering the end time free. The formula for the integral by parts has been proven for the left Caputo–Katugampola fractional derivative that contributes to the finding and deriving the necessary optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality conditions when both the final time and the final state are fixed. According to convexity assumptions prove that necessary optimality conditions are sufficient optimality conditions.
... Show MoreIt is widely accepted that early diagnosis of Alzheimer's disease (AD) makes it possible for patients to gain access to appropriate health care services and would facilitate the development of new therapies. AD starts many years before its clinical manifestations and a biomarker that provides a measure of changes in the brain in this period would be useful for early diagnosis of AD. Given the rapid increase in the number of older people suffering from AD, there is a need for an accurate, low-cost and easy to use biomarkers that could be used to detect AD in its early stages. Potentially, the electroencephalogram (EEG) can play a vital role in this but at present, no reliable EEG biomarker exists for early diagnosis of AD. The gradual s
... Show MoreMesoporous silica (MPS) nanoparticle was prepared as carriers for drug delivery systems by sol–gel method from sodium silicate as inexpensive precursor of silica and Cocamidopropyl betaine (CABP) as template. The silica particles were characterized by SEM, TEM, AFM, XRD, and N2adsorption–desorption isotherms. The results show that the MPS particle in the nanorange (40-80 nm ) with average diameter equal to 62.15 nm has rods particle morphology, specific surface area is 1096.122 m2/g, pore volume 0.900 cm3/g, with average pore diameter 2.902 nm, which can serve as efficient carriers for drugs. The adsorption kinetic of Ciprofloxacin (CIP) drug was studied and the data were analyzed and found to match well with
... Show More