The monomer phenyl acrylamide was synthesized by reacting acrylamide with chloro benzene in the presence of pyridine. Copolymer of phenyl acrylamide (PAM) with methyl methacrylate (MMA) was synthesized by free radical technique using dimethylsulfoxide (DMSO) as solvent and benzoyl peroxide (BPO) as initiator. The overall conversion was kept low (≤ 15% wt/wt) for all studies copolymers samples. The synthesized copolymers were characterized using fourier transform infrared spectroscopy (FT-IR), and their thermal properties were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The copolymers compositions were determined by elemental analysis. The monomer reactivity ratios have been calculated by linearization methods proposed by Kelen-Tudos and Fineman-Ross. The derived reactivity ratios (r1, r2) for (PAM-co-MMA) are: (0.03, 0.593). The microstructure of copolymers and sequence distribution of monomers in the copolymers were calculated by statistical method based on the average reactivity ratios and found that these values are in agreement with the derived reactivity ratios. Copolymers of PAM with MMA formed alternating copolymers.
2,2'-(1-(3,4-bis(carboxydichloromethoxy)-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl)bis(oxy)bis(2,2-dichloroacetic acid) a derivative of L-ascorbic acid was prepared by reaction of L-ascorbic acid with trichloroacetic acid (1:4) ratio, in the presence of potassium hydroxide. A series of new metal complexes of this ligand were prepared by a reaction with the chlorides of Cd(II), Co(II), Ni(II), Cu(II) and Zn(II). The new ligand and its complexes were identified by C.H.N., IR, UV-visible spectra, Thermogravimetric analysis (TGA), as well as 1H, 13C-NMR and Mass spectra for ligand L. The complexes were also identified by molar conductance, atomic absorption, magnetic susceptibility and X-ray diffraction for Cu (II) complex. FT-IR spectra
... Show MoreObjective: Benzoxazole derivatives have antifungal, anticancer, antibacterial, and anticonvulsant function. Encouraged by this comment, we agreed to synthesize new Benzoxazole compounds connected to the bases of Schiff's. Methods: 2,4-diaminophenol (1) was prepared by the reaction of 2,4-dinitrophenol and sodium dithionate. Compound (1) reacted with either acetic acid to afford compound (2) or with formic acid to afford compound (3). The Schiff bases were preparation from the reaction condensing reaction of compound (2) or (3) and aromatic aldehydes or ketone; [p-nitrobenzaldehyde, p-hydroxybenzaldehyde, p-chlorobenzaldehyde, p-bromoacetophenone and terephthaldehyde]. Results: FTIR and 1H-NMR spectroscopy characterized all of the pr
... Show MoreA group of amino derivatives [4-aminobenzenesulfonamide,4-amino-N¹ methylbenzenesulfonamide, or N¹-(4-aminophenylsulfonyl)acetamide] bound to carboxyl group of mefenamic acid a well known nonsteroidal anti-inflammatory drugs (NSAIDs) were designed and synthesized for evaluation as a potential anti-inflammatory agent. In vivo acute anti-inflammatory activity of the final compounds (9, 10 and 11) was evaluated in rat using egg-white induced edema model of inflammation in a dose equivalent to (7.5mg/Kg) of mefenamic acid. All tested compounds produced a significant reduction in paw edema with respect to the effect of propylene glycol 50% v/v (control group). Moreover, the 4-amino-N-methylbenzenesulfonamide derivative (c
... Show MoreGuanine has a variety of roles in chemistry, from its basic function in the storing and transferring genetic information to its usages in synthetic chemistry and other fields. Because of its distinct structure and biological importance, it is a fundamental component of contemporary study in organic chemistry and molecular biology. In this review, we focused on covering the synthetic pathways of various derivatives of guanine from the year 2000 until the present. As a result of the guanine molecule containing multiple functional groups, this gives us the ability to prepare several guanines such as O6-alkylating guanines, O6-benzylguanines, 8-aza-O6-benzylguanines, 9-substituted guanines, guanine-azo derivatives, guanine Schiff bases, guanin
... Show MoreAbstract This study investigated the treatment of textile wastewater contaminated with Acid Black 210 dye (AB210) using zinc oxide nanoparticles (ZnO NPs) through adsorption and photocatalytic techniques. ZnO NPs were synthesized using a green synthesis process involving eucalyptus leaves as reducing and capping agents. The synthesized ZnO NPs were characterized using UV-Vis spectroscopy, SEM, EDAX, XRD, BET, Zeta potential, and FTIR techniques. The BET analysis revealed a specific surface area and total pore volume of 26.318 m2/g. SEM images confirmed the crystalline and spherical nature of the particles, with a particle size of 73.4 nm. A photoreactor was designed to facilitate the photo-degradation process. The study investigated the inf
... Show MoreIn this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.
In this research, thin films of CdO: Mg and n-CdO: Mg/ p-Si heterojunction with thickness (500±50) nm have been deposited at R.T (300 K) by thermal evaporation technique. These samples have been annealed at different annealing temperatures (373 and 473) K for one hour. Structural, optical and electrical properties of {CdO: Mg (1%)} films deposited on glass substrate as a function of annealing temperature are studied in detail. The C-V measurement of n-CdO: Mg/ p-Si heterojunction (HJ) at frequency (100 KHz) at different annealing temperatures have shown that these HJ were of abrupt type and the builtin potential (Vbi) increase as the annealing temperature increases. The I-V characteristics of heterojunction prepared under dark case at
... Show MoreA thin film of (SnSe) and SnSe:Cu with various Cu ratio (0,3,5 and 7)% have been prepared by thermal evaporation technique with thickness 400±20 nm on glass substrate at (R.T). The effect of Cu dopants concentration on the structural, morphological, optical and electrical properties of (SnSe) Nano crystalline thin films was explored by using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), UV–Vis absorption spectroscopy and Hall Effect measurement respectively. X-ray diffraction analysis reveal the polycrystalline nature of the all films deposited with orthorhombic structure which possess a preferred orientation along the (111) plane. The crystalline sizes o
... Show MoreAbstract: The development of highly sensitive sensors has become an efficient field of research. In this work, an ArF Excimer laser of 193 nm with a maximum pulse energy of 275 mJ, 15 ns pulse duration and a repetition rate of 1 Hz is utilized to form a Laser Induced Periodic Surface Structures (LIPSS) of three different morphologies (nanochains, contours, grooves) on surface of CR39 polymer at a fluence range above the ablation threshold (250 mJ/cm2). The laser ablated polymer surface is then Surface Enhanced Raman Scattering (SERS) activated by deposition of a gold layer of 30 nm thickness. The capability of the produced substrate for surface enhanced Raman scattering is evaluated through thiophenol as an analyte molecule. It is observ
... Show MoreAbstract
The present paper focuses in a particular on the study of the biochar production conditions by the thermal pyrolysis of biomass from local Iraqi palm fronds, in the absence of oxygen. The biochar product can be used as soil improvers. The effect of temperature on the extent of the thermal pyrolysis process was studied in the range from 523 to 773K with a residence time of 15 minutes and nitrogen gas flow rate of 0.1 l/min. The produced biochar was characterized as will as biomass and degradation products. The results showed that the rate of biochar production decreases with the increasing in temperature, also it was noted that the normalized biochar surface area and pore size increases with the increasin
... Show More