The monomer phenyl acrylamide was synthesized by reacting acrylamide with chloro benzene in the presence of pyridine. Copolymer of phenyl acrylamide (PAM) with methyl methacrylate (MMA) was synthesized by free radical technique using dimethylsulfoxide (DMSO) as solvent and benzoyl peroxide (BPO) as initiator. The overall conversion was kept low (≤ 15% wt/wt) for all studies copolymers samples. The synthesized copolymers were characterized using fourier transform infrared spectroscopy (FT-IR), and their thermal properties were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The copolymers compositions were determined by elemental analysis. The monomer reactivity ratios have been calculated by linearization methods proposed by Kelen-Tudos and Fineman-Ross. The derived reactivity ratios (r1, r2) for (PAM-co-MMA) are: (0.03, 0.593). The microstructure of copolymers and sequence distribution of monomers in the copolymers were calculated by statistical method based on the average reactivity ratios and found that these values are in agreement with the derived reactivity ratios. Copolymers of PAM with MMA formed alternating copolymers.
Primary amide derivatives as histone deacetylase inhibitors (HDACIs) are very rare. This paper describes the synthesis of primary amide derivatives (compounds 6 and 7) that have the requirements to be histone deacetylase inhibitors of the zinc-binding type. Both of them exhibited good cytotoxicity against the tested cancer cell lines with much lower cytotoxicity against normal cell line.
In the present study benzofuran based chalcones 1 (a, b) are synthesized by condensing aromatic aldehydes with 2-acetylbenzofuran in the presence suitable base. These chalcones are very useful precursors for the synthesis of pyrazoline, isoxazoline, pyrmidine, cyclohexenone and indazole derivatives. All these compounds are characterized by their melting points, FTIR and 1 HMNR (for some of them) spectral dat
By condensation of benzaldehyde with thiourea in absolute ethanol in the presence of glacial acetic acid as a catalyst, the Schiff base(1-benzylidenethiourea)[I] was synthesized by synthesis of 4-(3-benzylidenethioureido)-4-thioxobut-2-enoic acid compound[II] by reaction of maleic anhydride with schiff base [I] in DMF. When treating compound [II] with ammonium persulfate (NH4)2S2O8 (APS) as an ethanol initiator to obtain polymer [III], compound [III] reacted to polymer [IV] with SOCl2 in benzene. Sulfamethizole, celecoxib, salbutamol, 4-aminoantipyrine to yield polymers [V-VIII], compound [IV] reaction with different drugs. Spectral evidence established the structure of synthesized compounds: FTIR an
CuO nanoparticles were synthesized in two different ways, firstly by precipitation method using copper acetate monohydrate Cu(CO2CH13)2·H2O, glacial acetic acid (CH3COOH) and sodium hydroxide(NaOH), and secondly by sol-gel method using copper chloride(CuCl2), sodium hydroxide (NaOH) and ethanol (C2H6O). Results of scanning electron microscopy (SEM) showed that different CuO nanostructures (spherical and Reef) can be formed using precipitation and sol- gel process, respectively, at which the particle size was found to be less than 2 µm. X-ray diffraction (XRD)manifested that the pure synthesized powder has no inclusions that may exist during preparations. XRD result
... Show MoreA
A new series of bases of Schiff (H2-H4) derived from phthalic anhydrideweresynthesized. These Schiff bases were prepared by the reaction of different amines (tyrosine methyl ester, phenylalanine methyl ester, and isoniazid) with the phthalimide derived aldehyde with the aid of glacial acetic acid or triethylamine ascatalysts. All the synthesized compounds were characterized by (FT-IR and 1HNMR) analyses and were in vitro evaluated for their antimicrobial activity against six various kinds of microorganisms. All the synthesized compounds had been screened for their antimicrobial activity against two Gram-positive bacteria “Staph. Aureus, and Bacillus subtilis
... Show MoreThe coordination ability of the azo-Schiff base 2-[1,5-Dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethyl imino]-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylazo]-5- hydroxy-benzoic acid has been proven in complexation reactions with Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) ions. The free ligand (LH) and its complexes were characterized using elemental analysis, determination of metal concentration, magnetic susceptibility, molar conductivity, FTIR, Uv-Vis, (1H, 13C) NMR spectra, mass spectra and thermal analysis (TGA). The results confirmed the coordination of the ligand through the nitrogen of the azomethine, Azo group (Azo) and the carboxylate ion with the metal ions. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are cal
... Show MoreSynthesis And Studies Of Complexes Of Some Elements With 2-Mercaptohiazole (2-HMBT)
Isatin (1H-indole-2, 3-dione) and its analogs are an important class of heterocyclic compounds. N-benzyl isatins and Schiff bases of isatin analogs have been reported to demonstrate a variety of biological activities. This work illustrates the synthesis of new N-benzylisatin Schiff bases and studies their biological activity. Firstly, Isatin and its analogs; 5-methoxyisatin, 5-fluoroisatin reacted with benzyl iodide to obtain N-benzylated derivatives of isatins 2 (ac). Secondly, these compounds were reacted with different amines (sulphanilamide and 4-methyl sulphonyl aniline) separately, to obtain Schiff bases compounds 3 (ac) and 4 (ac), respectively. The synthesized compounds were characterized by using FT-IR and 1HNMR spectroscopy. The s
... Show More