Introduction: COVID-19 vaccine have been indicated to successfully decrease the hazard for symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection furthermore associated hospitalisations. Objective: To study the immune response among different types of SARS-CoV-2 vaccines. Methods: This study includes 100 vaccinated individuals (43 Sinopharm, 30 AstraZeneca and 27 Pfizer) with one or two doses from different health centres in Baghdad. During the period from April 2021 to the end of May 2021, SARS-CoV-2 IgG and SARS-CoV-2 IgM levels were detected using AFIAS-6 device depending on FIA (Fluorescence Immunoassay) technique. Results: 93% of the cases were positive for IgG levels, and negative in 7% cases. Coronavirus IgM concentrations for all individuals were negative. The highest IgG mean level was seen in vaccinated persons with Pfizer than AstraZeneca (34.41, 26.29 respectively) and the lowest mean value was detected in Sinopharm (23.76). There was a significant elevation in IgG levels in the previously infected group in comparison with non-infected individuals. IgG levels decrease in antibody responses to SARS-CoV-2 in older individuals compared to younger participants. Also, results reported that SARS-CoV-2 IgG levels increased in males who were vaccinated with Pfizer and AstraZeneca more than females, while there is a significant decrease in IgG levels in vaccinated males with Sinopharm as compared to females. Conclusion: Different vaccines against SARS-CoV-2 produce different levels of IgG.
Gas hydrate formation poses a significant threat to the production, processing, and transportation of natural gas. Accurate predictions of gas hydrate equilibrium conditions are essential for designing the gas production systems at safe operating conditions and mitigating the problems caused by hydrates formation. A new hydrate correlation for predicting gas hydrate equilibrium conditions was obtained for different gas mixtures containing methane, nitrogen and carbon dioxide. The new correlation is proposed for a pressure range of 1.7-330 MPa, a temperature range of 273-320 K, and for gas mixtures with specific gravity range of 0.553 to 1. The nonlinear regression technique was applie
Heat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.
The behaviour of the electrical conductivity (σ) and the activation energies (Ea1, Ea2) have been investigated on a-InAs thin films as a function of thickness (250,350,450,550,650) nm, before and after heat treatment. The films were annealed at (373, 423, 473) K for one hour. The films contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the films thickness increases.
The main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9
... Show MoreIn this paper a two dimensional numerical simulation have been applied using
MATLAB program for generating Fraunhofer diffraction pattern from different
apertures. This pattern is applied for three types of apertures, including, circular,
square, and rectangular functions, and it's could be generated any wavelength in the
visible light. The studying demonstrated the capability and the efficiency of optical
imaging systems to observe a point source at very long distance. The circular
aperture shows better results across the shape of Fraunhofer pattern and optical
transfer function (otf). Also, the minimum values of the normalized irradiance of
different diffracted apertures have been computed at different dimension
Extraction and preparation of red organic dye from beetroot plant in different concentrations by using the solvent extraction process. Ethanol was the solvent used to prepare five different concentrations at the ratio of (Dye: Ethanol) abbreviated (D: E) 5:0,4:1, 3:2, 2:3,1:4. The optical, structural, and morphological properties are studied for the samples. The results appeared using the UV-Vis spectroscope the maximum peak of absorption (A) spectrum at wavelength Aλmax=480 nm when the transmittance (T) at the same wavelength 25% and the reflectivity 0.8%. Florescent (F) spectrum of beetroot dye is measured at wavelength Fλmax=535nm achieved to redshift about Δλ=55 nm. Also, measured the energy band gap
... Show MoreThis paper deals with estimation of the reliability system in the stress- strength model of the shape parameter for the power distribution. The proposed approach has been including different estimations methods such as Maximum likelihood method, Shrinkage estimation methods, least square method and Moment method. Comparisons process had been carried out between the various employed estimation methods with using the mean square error criteria via Matlab software package.
Background: The aim of this study was to evaluate the push-out bond strength of four different obturation materials to intraradicular dentin and to determine the failure mode. Materials and method: forty straight palatal roots of the maxillary first molars teeth were used in this study, the roots were instrumented using crown down technique and rotary EndoSequence system, the roots were randomly divided into four groups according to the materials used for obturation (n=10).Group (1): AH Plus sealer and gutta-percha. Group (2): Activ GP glass ionomer sealer and Activ GP gutta-percha (Activ GP system). Group (3): Bioceramic sealer and Bioceramic gutta-percha. Group (4): GuttaFlow2 sealer and gutta-percha. For all groups single cone obturatio
... Show MoreIn all process industries, the process variables like flow, pressure, level, concentration
and temperature are the main parameters that need to be controlled in both set point
and load changes.
A control system of propylene glycol production in a non isothermal (CSTR) was
developed in this work where the dynamic and control system based on basic mass
and energy balance were carried out.
Inlet concentration and temperature are the two disturbances, while the inlet
volumetric flow rate and the coolant temperature are the two manipulations. The
objective is to maintain constant temperature and concentration within the CSTR.
A dynamic model for non isothermal CSTR is described by a first order plus dead
time (FO