Color image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and quantitative experimental results on technical color images show that the proposed methodology gives reconstructed images with a high PSNR value compared to standard image compression techniques.
This study investigates the impact of spatial resolution enhancement on supervised classification accuracy using Landsat 9 satellite imagery, achieved through pan-sharpening techniques leveraging Sentinel-2 data. Various methods were employed to synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension reduction algorithms and weighted averages based on correlation coefficients and standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy was assessed using seven fidelity criteria. Classification tasks were performed utilizing Support Vector Machine and Maximum Likelihood algorithms. Results reveal that specifi
... Show MoreThe increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show MoreWireless channels are typically much more noisy than wired links and subjected to fading due to multipath propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.
In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MorePC-based controller is an approach to control systems with Real-Time parameters by controlling selected manipulating variable to accomplish the objectives. Shell and tube heat exchanger have been identified as process models that are inherently nonlinear and hard to control due to unavailability of the exact models’ descriptions. PC and analogue input output card will be used as the controller that controls the heat exchanger hot stream to the desired temperature.
The control methodology by using four speed pump as manipulating variable to control the temperature of the hot stream to cool to the desired temperature.
In this work, the dynamics of cross flow shell and tube heat exchanger is modeled from step changes in cold water f
Metaheuristics under the swarm intelligence (SI) class have proven to be efficient and have become popular methods for solving different optimization problems. Based on the usage of memory, metaheuristics can be classified into algorithms with memory and without memory (memory-less). The absence of memory in some metaheuristics will lead to the loss of the information gained in previous iterations. The metaheuristics tend to divert from promising areas of solutions search spaces which will lead to non-optimal solutions. This paper aims to review memory usage and its effect on the performance of the main SI-based metaheuristics. Investigation has been performed on SI metaheuristics, memory usage and memory-less metaheuristics, memory char
... Show MoreChannel estimation and synchronization are considered the most challenging issues in Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is highly affected by synchronization errors that cause reduction in subcarriers orthogonality, leading to significant performance degradation. The synchronization errors cause two issues: Symbol Time Offset (STO), which produces inter symbol interference (ISI) and Carrier Frequency Offset (CFO), which results in inter carrier interference (ICI). The aim of the research is to simulate Comb type pilot based channel estimation for OFDM system showing the effect of pilot numbers on the channel estimation performance and propose a modified estimation method for STO with less numb
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreResearch is a central component of neurosurgical training and practice and is increasingly viewed as a quintessential indicator of academic productivity. In this study, we focus on identifying the current status and challenges of neurosurgical research in Iraq.
An online PubMed Medline database search was conducted to identify all articles published by Iraq-based neurosurgeons between 2003 and 2020. Information was extracted in relation to the following parameters: authors, year of publication, author’s affiliation, author’s specialty, article type, article citation, journal name, journal