Preferred Language
Articles
/
nRbuJIcBVTCNdQwCEjrg
ON THE REDUCTION OF PRESTRESSING FORCE NEAR SUPPORTS IN PARTIALLY PRESTRESSED CONCRETE FLEXURAL MEMBERS
...Show More Authors

Straight tendons in pretensioned members can cause high-tensile stresses in the concrete extreme fibers at end sections because of the absence of the bending stresses due to self-weight and superimposed loads and the dominance of the moment due to prestressing force alone. Accordingly, the concrete tensile stresses at the ends of a member prestressed with straight tendons may limit the service load capacity of the member. It is therefore important to establish limiting zone in the concrete section within which the prestressing force can be applied without causing tension in the extreme concrete fibers. Two practical methods are available to reduce the stresses at the end sections due to the prestressing force. The first method based on changing the eccentricity of some tendons by raising them towards the end zone. The second method is based on bond prevention by encasing some of the tendons in plastic sheathing, effectively moving the point of application of prestressing force inward toward midspan for part of tendons. The present study focuses on a proposed third method to reduce the effect of the prestressing force near end supports by using straight strands with limited initial prestressing value in compression zone. New equations were suggested for the cracking moment and the prestressing force which consider the prestressed tendons in compression zone.

Crossref
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Performance of Self-Compacting Concrete Slab with Grinded Local Rocks
...Show More Authors

The effect of using grinded rocks of (quartzite and porcelanite) as powder of (10 and 20) % replacement by weight of cement for self-compacting concrete slabs was investigated in this study. Five slabs with 15 concrete cubes were tested experimentally at 28 days to study the compressive strength, ultimate load, ultimate deflection, ductility, crack load and steel strain. The test results show that, the compressive strength improvement when replacement of local rock powder reached to (7.3, 4.22) % for (10 and 20) % quartzite powder and (11.3, 16.1) % for (10 and 20) % porcelanite powder, respectively compared to the reference specimen. The ultimate load percentage increase for slabs with (10 and 20) % rep

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 02 2017
Journal Name
Kufa Journal Of Engineering
COMPRESSIVE STRENGTH OF CONCRETE CONTAINING WATER ABSORPTION POLYMER BALLS (WAPB)
...Show More Authors

Water absorbent polymers (WAP) are new component in producing building materials. They provide internal curing which reduces autogenous cracking, eliminates autogenous shrinkage, mortar strength increased, enhance early age strength to withstand strain, improve the durability, introduce higher early age compressive strength, have higher performance and reduce the effect of insufficient external curing. This research used different percent of polymer balls to choose the percent that provides good development in compressive strength with time for both water and air curing. The water absorption polymer balls in this research have the ability to absorb water and after usage in concrete they spill out the water (internal curing) and shri

... Show More
Publication Date
Mon Dec 11 2017
Journal Name
The First Mohesr And Hced Iraqi Scholars Conference In Australasia
Creep Strain Development of Self-compacting Portland-Limestone Cement Concrete
...Show More Authors

Prediction of the structural response of reinforced concrete to the time-dependent, creep and shrinkage, volume changes is complex. Creep is usually determined by measuring the change, with time, in the strain of specimens subjected to a constant stress and stored under appropriate conditions. This paper brings into view the development of creep strain for four self-compacting concrete mixes: A40, AL40, B60 and BL60 (where 40 and 60 represent the compressive strength level at 28 days and L indicates to Portlandlimestone cement). Specimens were put under sustained load and exposed to controlled conditions in a creep chamber (ASTM C512). The test results showed that normal strength Portland-limestone mixes have yielded lower ultimate c

... Show More
Publication Date
Mon Mar 01 2021
Journal Name
Key Engineering Materials
Experimental Investigation of Reinforced Concrete Columns with Steel Embedded Tubes
...Show More Authors

This study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of Engineering
Punching Shear Strength of Reinforced Concrete Flat Plates with Openings
...Show More Authors

Publication Date
Sat Mar 31 2018
Journal Name
Journal Of Engineering
Seismic Response of Nonseismically Designed Reinforced Concrete Low Rise Buildings
...Show More Authors

In this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Aug 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Empirical Equations for Analysis of Two-Way Reinforced Concrete Slabs
...Show More Authors

There are many different methods for analysis of two-way reinforced concrete slabs. The most efficient methods depend on using certain factors given in different codes of reinforced concrete design. The other ways of analysis of two-way slabs are the direct design method and the equivalent frame method. But these methods usually need a long time for analysis of the slabs.

In this paper, a new simple method has been developed to analyze the two-way slabs by using simple empirical formulae, and the results of final analysis of some examples have been compared with other different methods given in different codes of practice.

The comparison proof that this simple proposed method gives good results and it can be used in analy

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
Punching Shear Strength of Reinforced Concrete Flat Plates with Openings
...Show More Authors

Test results of six half-scale reinforced concrete flat plates connections with an opening in the vicinity of the column are reported. The test specimens represent a portion of a slab bounded by the lines of contraflexure around the column. The tests were designed to study the effect of openings on the punching shear behavior of the slab-column connections. The test parameters were the location and the size of the openings. One specimen had no opening and the remaining five had various arrangements of openings around the column. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The openings in the specimens were square, with the sides parallel to the sides of the column. Three sizes of ope

... Show More
View Publication Preview PDF
Crossref (16)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Latin American Journal Of Solids And Structures
Structural Behavior of Reinforced Hybrid Concrete Columns under Biaxial Loading
...Show More Authors

View Publication
Crossref (10)
Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
PROPERTIES OF HARDENED CONCRETE USING CRUSHED CLAY BRICK AS AGGREGATES
...Show More Authors

This paper provides the result of an investigation to use of crushed clay brick as
aggregates in producing concrete. Eight different crushed clay brick aggregate concretes were
used in this investigation. Compressive strength, splitting tensile strength and pulse velocity of
crushed clay brick aggregates concrete were determined and compare to natural aggregate
concrete. The compressive strength of crushed clay brick aggregates concretes were always
lower than the compressive strength of natural aggregates concrete regardless the age of
concrete, but the crushed clay brick aggregates concrete showed better performance as the age of
concrete increases and average reduction in compressive strength were 33.5% at the age

... Show More
View Publication Preview PDF
Crossref (4)
Crossref