Although the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory tests and other numerical analyses. In this research, numerical modeling is used to explore the kinematic forces created in a single pile erected in two sand layers under two different conditions (dry and saturated states). Based on the obtained results from the physical model, the maximum bending moment was observed at a depth around 200 mm below the ground surface in the loose sand layer, then these values gradually reduced until it becomes negative in the dense sand layer. It has been demonstrated that this modeling may be used to predict how a pile foundation would respond to “kinematic” loading generated by ground movements during a seismic event. Consequently, the current findings could be used in the design and construction of bored aluminum or steel piles in Al-Karbala soil.
As modern radiotherapy technology advances, radiation dose and dose distribution have improved significantly. As part of a natural evolution, there has recently been renewed interest in therapy, particularly in the use of heavy charged particles, because these types of radiation serve theoretical advantages in all biological and physical aspects. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with Breast Tissue were calculated by using Beth-Bloch equation, Zeigler's formula and SRIM software, also the Range and Liner Energy Transfer (LET) and Breast Thickness As well as Dose and Dose equivalent for this particle were calculated by using Mat lab language for (0.01-200) MeV alpha ene
... Show MoreNuclear medicine is important for both diagnosis and treatment. The most common treatment for diseases is radiation therapy used against cancer. The radiation intensity of the treatment is often less than its ability to cause damage, so radiation must be carefully controlled. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with ovary tissue were calculated using Beth-Bloch equation, Zeigler’s formula and SRIM Software also the range and Liner Energy Transfer (LET) and ovary thickness as well as dose and dose equivalent for this particle were calculated by using Matlab language for (0.01-200) MeV alpha energy.
In this work, the effect of variation of semi-angle of the conical part on the vibration characteristics of cylindrical-conical coupled structure is investigated. The shell is made of polyester resin reinforced by continuous E-glass fibers. The case is analyzed experimentally and numerically for orthotropic shell structures. The experimental program is conducted by exciting the fabricated structure by an impact hammer and monitoring the response using an attached accelerometer for different semi-angles of the conical part.
Software named SIGVIEW is used to perform the signal processing on the acquired signal in order to measure the natural frequencies and the corresponding mode shapes. The numerical investigation is achieved using ANS
A hydrophilic interaction chromatography has been investigated to separate 2-deoxycytidine chosen for nucleoside. A small molecule with specific features for human serum samples was 2-deoxycytidine tested. 2-deoxycytidine has been applied to self-made stationary hydrophilic phases (ZIC1 and ZIC5). The deoxycytidine (dCD) retention was investigated with varying concentrations of sodium acetate buffer, acetonitrile%, and pH. The results confirmed the hydrophilicity of 2-deoxycytidine. The exchanger retention mechanism was studied taking into account 2-deoxycytidine used for describing the interaction of hydrophilic and cation. For both ZIC1 and ZIC5 exchangers, we described and discussed the influence of chromatographic conditions (co
... Show MoreEsculin (ESCN) is used in the pharmaceutical industry with intravenous effect, stimulant and anti-inflammatory capillaries, like vitamin P. It is a significant component of many anti-inflammatory remedies such as esqusan, esflazid and anavenol [14]. It is also found in numerous other remedies available in the market such as proctosone, anustat, and ariproct.
To determine experimental conditions, to elucidate retention behavior of esculin in HILIC mode. Moreover, to suggest new ways to separate and determinate esculin in ointments.
Two hydrophilic c
Viscosity (η) of solutions of 1-butanol, sec-butanol, isobutanol and tert-butanol were investigated in aqueous solution structures of ranged composition from 0.55 to 1 mol.dm-3 at 298.15 K. The data of (η/η˳) were evaluated based on reduced Jone - Dole equation; η/η˳ =BC+1. In the term of B value, the consequences based on solute-solvent interaction in aqueous solutions of alcohols were deliberated. The outcomes of this paper discloses that alcohols act as structure producers in the water. Additionally, it has shown that solute-solvent with interacting activity of identical magnitude is in water-alcohol system
Despite the G protein-coupled receptors (GPCRs) being the largest family of signalling proteins at the surface of cells, their potential to be targeted in cancer therapy is still under-utilised. This review highlights the contribution of these receptors to the process of oncogenesis and points to some likely challenges that might be encountered in targeting them. GPCR-signalling pathways are often complex and can be tissue-specific. Cancer cells hijack these communication networks to their proliferative advantage. The role of selected GPCRs in the different hallmarks of cancer is examined to highlight the complexity of targeting these receptors for therapeutic benefit. Our
... Show More