Preferred Language
Articles
/
nBewlpIBVTCNdQwCm7hJ
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained were 96.5% and 93.47%, respectively, before applying balancing to the data. In addition, 98.59% and 97.18%, respectively, after applying the balancing technique The extreme gradient boosting (XGBoost) technique had been applied to selecting the important features and the Pearson correlation for finding the correlation between features.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Developing Arabic License Plate Recognition System Using Artificial Neural Network and Canny Edge Detection
...Show More Authors

In recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny edge detection

... Show More
Publication Date
Tue Jan 01 2019
Journal Name
Spe Europec Featured At 81st Eage Conference And Exhibition
Development of Artificial Neural Networks and Multiple Regression Analysis for Estimating of Formation Permeability
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 31 2024
Journal Name
Iraqi Geological Journal
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of New Models to Determine the Rheological Parameters of Water-Based Drilling Fluid using Artificial Neural Networks
...Show More Authors

It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological

... Show More
Crossref
Publication Date
Wed Oct 11 2023
Journal Name
Journal Of Educational And Psychological Researches
The Association between Emotional Intelligence and Academic Adaptation among a Sample of Gifted Students in the Intermediate and Secondary Schools in Jeddah
...Show More Authors

This study aims to examine the relationship between emotional intelligence and academic adaptation among a sample of gifted students in intermediate and high schools in Jeddah, Saudi Arabia. The study also seeks to examine the differences between group means in emotional intelligence and academic adaptation due to demographic variables (gender and school level). In addition, the study aims to examine the role of emotional intelligence in predicting the level of academic adaptation. The researcher performed the descriptive, correlational, predictive, and comparative approaches to collect the data from a sample comprised of (309) gifted students using the emotional intelligence scale developed by Bar-on (2000), whi

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Performance Equations for Household Compressors Depending on Manufacturing Data for Refrigerators and Freezers
...Show More Authors

Abstract

 A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.

Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.

The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 29 2024
Journal Name
Iraqi Journal Of Science
Evaluating the Performance and Behavior of CNN, LSTM, and GRU for Classification and Prediction Tasks
...Show More Authors

     Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Total Dissolved Salt Prediction Using Neurocomputing Models: Case Study of Gypsum Soil Within Iraq Region
...Show More Authors

View Publication
Scopus (14)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sat Jun 28 2014
Journal Name
Iraqi Postgraduate Medical Journal
Comparism Between Transvaginal Cervical Length Measurement and Digital Examination in Prediction of Imminent preterm Delivery
...Show More Authors

BACKGROUND: Preterm labour is a major cause of perinatal morbidity and mortality, so it is important to predict preterm delivery using the clinical examination of the cervix and uterine contraction frequency. New markers for the prediction of preterm birth have been developed such as transvaginal ultrasound measurement of cervical length as this method is widely available. OBJECTIVE: To determine, whether transvaginal cervical length measurement predicts imminent preterm delivery better than digital cervical length measurement in women presented with preterm labour and intact membranes. PATIENTS AND METHODS: Two hundred women presented with preterm labour between 24 and 36+6 weeks of gestation were included in this study. All women subjecte

... Show More
View Publication
Publication Date
Wed Nov 13 2019
Journal Name
International Journal Of Research In Pharmaceutical Sciences
Prediction of maternal diabetes and adverse neonatal outcome in normotensive pregnancy using serum uric acid
...Show More Authors

Diabetes mellitus, with adverse neonatal events are challenging issues to all obstetricians and pediatricians, where uric acid could play a vital role. We aimed to assess the relationship and prognostic benefits of serum uric acid measured at about 20 weeks’ gestation in normotensive pregnancy, with subsequent maternal diabetes, and neonatal complications. All singleton normotensive pregnant women with normal blood glucose, serum creatinine, and weight before pregnancy, whom attended Medical City Hospital, Department of Obstetrics and Gynecology in Baghdad, were involved and regarded as the case group, on the condition that their serum uric acid measured at 20 weeks’ gestation > 3 mg/dl, but if ≤ 3 mg/dl, they would be regi

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (5)
Scopus Crossref