Preferred Language
Articles
/
nBewlpIBVTCNdQwCm7hJ
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained were 96.5% and 93.47%, respectively, before applying balancing to the data. In addition, 98.59% and 97.18%, respectively, after applying the balancing technique The extreme gradient boosting (XGBoost) technique had been applied to selecting the important features and the Pearson correlation for finding the correlation between features.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for New COVID-19 Cases Using Recurrent Neural Networks and Long-Short Term Memory
...Show More Authors

     This research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being  0.66975075, 0.470

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Engineering
Geomechanical study to predict the onset of sand production formation
...Show More Authors

One of the costliest problems facing the production of hydrocarbons in unconsolidated sandstone reservoirs is the production of sand once hydrocarbon production starts. The sanding start prediction model is very important to decide on sand control in the future, including whether or when sand control should be used. This research developed an easy-to-use Computer program to determine the beginning of sanding sites in the driven area. The model is based on estimating the critical pressure drop that occurs when sand is onset to produced. The outcomes have been drawn as a function of the free sand production with the critical flow rates for reservoir pressure decline. The results show that the pressure drawdown required to

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
Bit Plane Slicing, Wavelet and Polynomials Mixing for Image Compression
...Show More Authors

     This paper introduced a hybrid technique for lossless image compression of natural and medical images; it is based on integrating the bit plane slicing and Wavelet transform along with a mixed polynomial of linear and non linear base. The experiments showed high compression performance with fully grunted reconstruction.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Construction And Building Materials
Linear viscous approach to predict rut depth in asphalt mixtures
...Show More Authors

Rutting in asphalt mixtures is a very common type of distress. It occurs due to the heavy load applied and slow movement of traffic. Rutting needs to be predicted to avoid major deformation to the pavement. A simple linear viscous method is used in this paper to predict the rutting in asphalt mixtures by using a multi-layer linear computer programme (BISAR). The material properties were derived from the Repeated Load Axial Test (RLAT) and represented by a strain-dependent axial viscosity. The axial viscosity was used in an incremental multi-layer linear viscous analysis to calculate the deformation rate during each increment, and therefore the overall development of rutting. The method has been applied for six mixtures and at different tem

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Development of a Job Applicants E-government System Based on Web Mining Classification Methods
...Show More Authors

     Governmental establishments are maintaining historical data for job applicants for future analysis of predication, improvement of benefits, profits, and development of organizations and institutions. In e-government, a decision can be made about job seekers after mining in their information that will lead to a beneficial insight. This paper proposes the development and implementation of an applicant's appropriate job prediction system to suit his or her skills using web content classification algorithms (Logit Boost, j48, PART, Hoeffding Tree, Naive Bayes). Furthermore, the results of the classification algorithms are compared based on data sets called "job classification data" sets. Experimental results indicate

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Applying Ensemble Classifier, K-Nearest Neighbor and Decision Tree for Predicting Oral Reading Rate Levels
...Show More Authors

For many years, reading rate as word correct per minute (WCPM) has been investigated by many researchers as an indicator of learners’ level of oral reading speed, accuracy, and comprehension. The aim of the study is to predict the levels of WCPM using three machine learning algorithms which are Ensemble Classifier (EC), Decision Tree (DT), and K- Nearest Neighbor (KNN). The data of this study were collected from 100 Kurdish EFL students in the 2nd-year, English language department, at the University of Duhok in 2021. The outcomes showed that the ensemble classifier (EC) obtained the highest accuracy of testing results with a value of 94%. Also, EC recorded the highest precision, recall, and F1 scores with values of 0.92 for

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Diagnostic and Predictive Values of IL-6 in a Group of Iraqi Patients with Rheumatoid Arthritis
...Show More Authors

Background: Researchers have found that interleukin 6 (IL-6) plays a crucial regulatory function in the onset and progression of a wide range of inflammatory disorders. One of the more prevalent inflammatory illnesses affecting people today is rheumatoid arthritis.

Aim of the study: The purpose of this study was to compare the IL-6 levels of rheumatoid arthritis (RA) patients to those of healthy controls and to examine the relationship between IL-6 and RA-related demographic and clinical factors.                                                                                                       

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Wed Nov 29 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering (ijasre), Issn:2454-8006, Doi: 10.31695/ijasre
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed.  A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing

... Show More
View Publication
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Geological Journal
Development of 1D-Synthetic Geomechanical Well Logs for Applications Related to Reservoir Geomechanics in Buzurgan Oil Field
...Show More Authors

Knowledge of the distribution of the rock mechanical properties along the depth of the wells is an important task for many applications related to reservoir geomechanics. Such these applications are wellbore stability analysis, hydraulic fracturing, reservoir compaction and subsidence, sand production, and fault reactivation. A major challenge with determining the rock mechanical properties is that they are not directly measured at the wellbore. They can be only sampled at well location using rock testing. Furthermore, the core analysis provides discrete data measurements for specific depth as well as it is often available only for a few wells in a field of interest. This study presents a methodology to generate synthetic-geomechani

... Show More
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Baghdad Science Journal
Role of Carbon Dioxide on the Corrosion of Carbon Steel Reinforcing Bar in Simulating Concrete Electrolyte
...Show More Authors

The main factors that make it possible to get the corrosion of reinforcing steel in concrete are chloride ions and the absorption of carbon dioxide from the environment, and each of them works with a mechanism which destroys the stable immunity of rebar in the concrete. In this work the effect of carbon dioxide content in the artificial concrete solution on the corrosion behavior of carbon steel reinforcing bar (CSRB) was studied, potentiostatically using CO2 stream gas at 6 level of concentrations;  0.03 to 2.0  weight percent, and the effect of rising electrolyte temperature was also followed  in the range 20 to 50 C. Tafel plots and cyclic polarization procedures were obeyed to investigate the c

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref