Preferred Language
Articles
/
nBewlpIBVTCNdQwCm7hJ
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained were 96.5% and 93.47%, respectively, before applying balancing to the data. In addition, 98.59% and 97.18%, respectively, after applying the balancing technique The extreme gradient boosting (XGBoost) technique had been applied to selecting the important features and the Pearson correlation for finding the correlation between features.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Influence Activation Function in Approximate Periodic Functions Using Neural Networks
...Show More Authors

The aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks.             In all algorithms, the gradient of the performance function (energy function) is used to determine how to

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A Review of the Electrical Submersible Pump Development Chronology
...Show More Authors

The electric submersible pump, also known as ESP, is a highly effective artificial lift method widely used in the oil industry due to its ability to deliver higher production rates compared to other artificial lift methods. In principle, ESP is a multistage centrifugal pump that converts kinetic energy into dynamic hydraulic pressure necessary to lift fluids at a higher rate with lower bottomhole pressure, especially in oil wells under certain bottomhole condition fluid, and reservoir characteristics. However, several factors and challenges can complicate the completion and optimum development of ESP deployed wells, which need to be addressed to optimize its performance by maximizing efficiency and minimizing costs and uncertainties. To

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Feb 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Encryption Algorithm Based on Chaotic Neural Network and Random Key Generator
...Show More Authors

This work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Solving Adaptive Distributed Routing Algorithm Using Crow Search Algorithm
...Show More Authors

    Crow Search Algorithm (CSA) can be defined as one of the new swarm intelligence algorithms that has been developed lately, simulating the behavior of a crow in a storage place and the retrieval of the additional food when required. In the theory of the optimization, a crow represents a searcher, the surrounding environment represents the search space, and the random storage of food location represents a feasible solution. Amongst all the food locations, the one where the maximum amount of the food is stored is considered as the global optimum solution, and objective function represents the food amount. Through the simulation of crows’ intelligent behavior, the CSA attempts to find the optimum solutions to a variety of the proble

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Bulletin Of Electrical Engineering And Informatics
Solid waste recycling and management cost optimization algorithm
...Show More Authors

Solid waste is a major issue in today's world. Which can be a contributing factor to pollution and the spread of vector-borne diseases. Because of its complicated nonlinear processes, this problem is difficult to model and optimize using traditional methods. In this study, a mathematical model was developed to optimize the cost of solid waste recycling and management. In the optimization phase, the salp swarm algorithm (SSA) is utilized to determine the level of discarded solid waste and reclaimed solid waste. An optimization technique SSA is a new method of finding the ideal solution for a mathematical relationship based on leaders and followers. It takes a lot of random solutions, as well as their outward or inward fluctuations, t

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Meerkat Clan Algorithm for Solving N-Queen Problems
...Show More Authors

The swarm intelligence and evolutionary methods are commonly utilized by researchers in solving the difficult combinatorial and Non-Deterministic Polynomial (NP) problems. The N-Queen problem can be defined as a combinatorial problem that became intractable for the large ‘n’ values and, thereby, it is placed in the NP class of problems. In the present study, a solution is suggested for the N-Queen problem, on the basis of the Meerkat Clan Algorithm (MCA). The problem of n-Queen can be mainly defined as one of the generalized 8-Queen problem forms, for which the aim is placing 8 queens in a way that none of the queens has the ability of killing the others with the use of the standard moves of the chess queen. The Meerkat Clan environm

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Sep 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
New Viscosity Correlation for Different Iraqi Oil Fields
...Show More Authors

 

Viscosity is one of the most important governing parameters of the fluid flow, either in the porous media or in pipelines. So it is important to use an accurate method to calculate the oil viscosity at various operating conditions. In the literature, several empirical correlations have been proposed for predicting crude oil viscosity. However, these correlations are limited to predict the oil viscosity at specified conditions. In the present work, an extensive experimental data of oil viscosities collected from different samples of Iraqi oil reservoirs was applied to develop a new correlation to calculate the oil viscosity at various operating conditions either for dead, satura

... Show More
View Publication Preview PDF
Publication Date
Wed May 25 2022
Journal Name
Iraqi Journal Of Science
A Pseudo-Random Number Generator Based on New Hybrid LFSR and LCG Algorithm
...Show More Authors

      In many areas, such as simulation, numerical analysis, computer programming, decision-making, entertainment, and coding, a random number input is required. The pseudo-random number uses its seed value. In this paper, a hybrid method for pseudo number generation is proposed using Linear Feedback Shift Registers (LFSR) and Linear Congruential Generator (LCG). The hybrid method for generating keys is proposed by merging technologies. In each method, a new large in key-space group of numbers were generated separately. Also, a higher level of secrecy is gained such that the internal numbers generated from LFSR are combined with LCG (The adoption of roots in non-linear iteration loops). LCG and LFSR are linear structures and outputs

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
Matter Density Distributions, Root-mean Square Radii and Elastic Electron Scattering Form Factors of Some Exotic Nuclei (17B, 11Li, 8He)
...Show More Authors

The two-neutron halo-nuclei (17B, 11Li, 8He) was investigated using a two-body nucleon density distribution (2BNDD) with two frequency shell model (TFSM). The structure of valence two-neutron of 17B  nucleus in a pure (1d5/2) state and in a pure (1p1/2) state for  11L and 8He nuclei. For our tested nucleus, an efficient (2BNDD's) operator for point nucleon system folded with two-body correlation operator's functions was used to investigate nuclear matter density distributions, root-mean square (rms) radii, and elastic electron scattering form factors. In the nucleon-nucleon forces the correlation took account of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
The effect of short range correlation on the inelastic C2 and C4 form factors of 18O nucleus
...Show More Authors

The effect of short range correlations on the inelastic Coulomb form factors for excited +2 states (1.982, 3.919, 5.250 and 8.210MeV) and +4 states (3.553, 7.114, 8.960 and 10.310 MeV) in O18 is analyzed. This effect (which depends on the correlation parameterβ) is inserted into the ground state charge density distribution through the Jastrow type correlation function. The single particle harmonic oscillator wave function is used with an oscillator size parameter .b The parameters β and b are adjusted for each excited state separately so as to reproduce the experimental root mean square charge radius of .18O The nucleusO18 is considered as an inert core of C12 with two protons and four neutrons distributed over 212521211sdp−− activ

... Show More
View Publication Preview PDF
Crossref