Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained were 96.5% and 93.47%, respectively, before applying balancing to the data. In addition, 98.59% and 97.18%, respectively, after applying the balancing technique The extreme gradient boosting (XGBoost) technique had been applied to selecting the important features and the Pearson correlation for finding the correlation between features.
KE Sharquie, AA Noaimi, HA Al-Mudaris, Journal of Cosmetics, Dermatological Sciences and Applications, 2013 - Cited by 4
The current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method) involved using three different solvents which are absolute ethanol, 50% aqueous ethanol and water for both extraction methods using room temperature and direct heat respectively. Crude extracts of two tea samples that obtained from two methods were fractionated by using two solvents with different polarity (chloroform and
... Show MoreThe objective of this study was to investigate the drought stress and plant density possibility on water productivity and grain yield of maize (Zea mays L.) (Planting Baghdad 3 synthetic varieties), Field experiment was conducted at Abu Ghraib Research Station (Baghdad) during spring and Autumn seasons of 2016 using a randomized complete block design arranged in split plot with three replications. Three irrigation treatment included: irrigation after depletion 50% of available water (T1), irrigation after depletion 75% of available water (T2) and irrigation after depletion 90% of available water (T3) in the main plots and three plant density which were: 1 seeds hill-1 (D1) giving a uniform plant density of 66666 plants ha-1 , 2 seeds hill1
... Show MoreBackground: Myocardial infarction (MI) is distinguished by the necrosis of myocardial cells as a result of substantial and prolonged ischemia. Anxiety, problems sleeping, and feelings of depression are some of the most common psychosocial consequences of having a myocardial infarction. Aim: The purpose of this study is to evaluate the effects of post-myocardial infarction on patients' levels of anxiety, depression, and quality of sleep. Method: The collection of data from 94 individuals with MI was carried out according to a descriptive cross-sectional design. Sleep quality, depression, and anxiety were evaluated using standard questionnaires. Results: 69.1% of the participants reported having trouble getting quality sleep. The perc
... Show MoreAbstract The goal of current study was to identify the relationship between addiction of self-images (Selfie) and personality disorder of narcissus, and the difference of significance the relationship between addiction self-images (selfie) and personality disorder narcissus at students of Mustansiriya university, addiction self- images (selfie) defined: a photograph that one has taken of oneself, typically one taken with a smartphone or webcam and shared via social media, edit and down lowed to social networking sites, and over time, the replacement of normal life virtual world, which is accompanied by a lack of a sense of time, and the formation of repeated patterns increase the risk of social and personal problems. To achieve the goals
... Show MoreOne of the wellbore instability problems in vertical wells are breakouts in Zubair oilfield. Breakouts, if exceeds its critical limits will produce problems such as loss circulation which will add to the non-productive time (NPT) thus increasing loss in costs and in total revenues. In this paper, three of the available rock failure criteria (Mohr-Coulomb, Mogi-Coulomb and Modified-Lade) are used to study and predict the occurrence of the breakouts. It is found that there is an increase over the allowable breakout limit in breakout width in Tanuma shaly formation and it was predicted using Mohr-Coulomb criterion. An increase in the pore pressure was predicted in Tanuma shaly formation, thus; a new mud weight and casing pr
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show More