Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained were 96.5% and 93.47%, respectively, before applying balancing to the data. In addition, 98.59% and 97.18%, respectively, after applying the balancing technique The extreme gradient boosting (XGBoost) technique had been applied to selecting the important features and the Pearson correlation for finding the correlation between features.
In this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreThe injection of Low Salinity Water (LSWI) as an Enhanced Oil Recovery (EOR) method has recently attracted a lot of attention. Extensive research has been conducted to investigate and identify the positive effects of LSWI on oil recovery. In order to demonstrate the impact of introducing low salinity water into a reservoir, simulations on the ECLIPSE 100 simulator are being done in this work. To simulate an actual reservoir, an easy static model was made. In order to replicate the effects of injecting low salinity water and normal salinity, or seawater, the reservoir is three-phase with oil, gas, and water. It has one injector and one producer. Five cases were suggested to investigate the effect of low salinity water injection with differen
... Show MoreZygapophyseal joints (or facet joints), are a plane synovial joint which located between the articular facet processes of the vertebral arch which is freely guided movable joints. Ten dried vertebrae were used for the lumbar region and taking (L4) as a sample to reveal stress pathways across the joints by using ANSYS program under different loading conditions which used Finite Elements Analysis model. Results obtained from the ANSYS program are important in understanding the boundary conditions for load analysis and the points of stress concentration which explained from the anatomical point of view and linked to muscle and ligament attachments. This model used as a computational tool to joint biomechanics and to prosthetic im
... Show MoreCorrosion- induced damage in reinforced concrete structure such as bridges, parking garages, and buildings, and the related cost for maintaining them in a serviceable condition, is a source of major concern for the owners of these structures.
Fly ash produced from south Baghdad power plant with different concentrations (20, 25 and 30) % by weight from the cement ratio were used as a corrosion inhibitor as a weight ratio from the cement content.
The concrete batch ratio under study was (1:1.5:3) cement, sand and gravel respectively which is used in Iraq. All the raw materials used were locally manufactured.
Concrete slabs (250x250x70) mm dimensions were casted, using Poly-wood molds. Two steel bars were embedded in the central po
In this work, the study of