Chlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via modest reaction barriers. As a result of localization of excess electrons left behind after creation of oxygen vacancies, analogous fission over an oxygen vacant surface systematically necessitates lower energy barriers. Dehydrochlorination of CE and CA molecules preferentially proceeds via a dissociative addition route; however, subsequent desorption of vinyl and ethyl moieties requires less energy than surface assisted β C–H bond breakage. The profound stability of hydrocarbon species on the surface contributes to the observed deactivation of ceria at temperatures as low as 580 K under pyrolytic conditions. Adsorption of an oxygen molecule at an oxygen vacant site initiates decomposition of the adsorbed phenyl moiety. Likewise, adsorbed surface hydroxyl groups serve as the hydrogen source in the observed conversion of CB into benzene. A plausible mechanism for the formation of 1,4-dichlorobenzene incorporates abstraction of a para hydrogen in the CB molecule by an O− surface anion followed by chlorine transfer from the surface. Plotted conversion–temperature profiles via a simplified kinetic model against corresponding experimental profiles exhibit a reasonable agreement. The results from this study could be useful in the ongoing efforts to improve ceria's catalytic capacity for destroying CVOCs.
A new novel series of metalcomplexes are prepared from reactions between 2-benzoylthio- benzimidazole (L) with metal salts of Co (II) , Fe(III) and Rh (III) , while Pd(II) complex was obtained by mixing ligandsof 2-benzoylthiobenzimidazole (L) as primary ligand and bipyridine (L/)as secondary ligand as well as palladium chloride as metal salt in an ethanoic medium. The geometry of these compounds were identified using C.H.N.microanalysis, Ultraviolet–visible, Fourier transforms infrared, magnetic susceptibility, molar conductivity and flame atomic absorption (A.A). From the dataobtained by these spectral analyses, the molecular structures for Rh and Fe complexes were proposed to be octahedral geometry. A square planar const
... Show MoreThis study includes design and synthesis of new non-steroidal anti-inflammatory agents (NSAIDs) with expected cyclooxygenase-2 (COX-2) selective inhibition to achieve better activity and low gastric side effects. Two series of compounds have been designed and synthesized as potential NSAIDs,these are: Salicylamide derivatives (compounds 3,4,5 ) and Diflunisal derivatives (compounds 10&11). In vivo acute anti-inflammatory effect of one of the synthesized agents (compound 3) was evaluated in the rat using egg-white induced paw edema model of inflammation. Preliminary pharmacological study revealed that compound 3 exhibited less anti-inflammatory effect compared to that of aspirin after
... Show MoreThe current study was carried out to investigate the correlation of gene expressions of ADA1 and ADA2 genes with the development of autoimmune thyroid disease (AITD) in a sample of Iraqi females. One hundred patients with AITD and 80 controls were included. Quantitative real time polymerase chain reaction (qRT–PCR) was utilized for investigation of ADA1 and ADA2 gene expression among patients and controls. The correlation of age and body mass index (BMI) with AITD occurrence comparing with controls was studied. Based on the results of this study, there is high expression level of ADA1 and ADA2 genes in patients compared with healthy controls; also, the gene expression fold (2-ΔΔCT) of ADA1 and ADA2 among AITD patients was recorded and a
... Show More Heat exchanger is an important device in the industry for cooling or heating process. To increase the efficiency of heat exchanger, nanofluids are used to enhance the convective heat . transfer relative to the base fluid. - Al2O3/water nanofluid is used as cold stream in the shell and double concentric tube heat exchanger counter current to the hot stream basis oil. These nanoparticles were of particle size of 40 nm and it was mixed with a base fluid (water) at volume
concentrations of 0.002% and 0.004%. The results showed that each of Nusselt number and overall heat transfer coefficient increased as nanofluid concentrations increased. The pressure drop of nanofluid increased slightly than the base fluid because
Mixed ligands of 2-benzoyl Thiobenzimiazole (L1) with 1,10-phenanthroline (L2) complexes of Cr(III) , Ni(II) and Cu(II) ions were prepared. The ligand and the complexes were isolated and characterized in solid state by using FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR, flame atomic absorption, elemental micro analysis C.H.N.S, magnetic susceptibility , melting points and conductivity measurements. 2-Benzoyl thiobenzimiazole behaves as bidenetate through oxygen atom of carbonyl group and nitrogen atom of imine group. From the analyses Octahedral geometry was suggested for all prepared complexes. A theoretical treatment of ligands and their metal complexes in gas phase were studied using HyperChem-8 program, moreover, ligands in gas phase
... Show MoreThe involvement of maxillofacial tissues in SARS‐CoV‐2 infections ranges from mild dysgeusia to life‐threatening tissue necrosis, as seen in SARS‐CoV‐2‐associated mucormycosis. Angiotensin‐converting enzyme 2 (ACE2) which functions as a receptor for SARS‐CoV‐2 was reported in the epithelial surfaces of the oral and nasal cavities; however, a complete understanding of the expression patterns in deep oral and maxillofacial tissues is still lacking.
The immunohistochemical expression of ACE2 was analyzed in 95 specimens from maxillofacial tissues and 10 specimens o
This study is carried out on patients with type 2 diabetes mellitus to assess the lipid profile, malondialdehyde and glutathione. Our study is concerned with 51 (Iraqi Arab females) patients of type 2 diabetes mellitus compared with 31 control subjects unified in age, sex and ethnic background. Lipid profile is measured by using commercially available kits, while the serum MDA and glutathione levels are measured by means of sandwich ELISA test using commercially available kits. Serum MDA is significantly higher (P<0.001) while glutathione is significantly lower (P<0.001) in type 2 diabetic patients when compared to the control. The normal levels of MDA (3.82 ± 0.77n mol/ml) and GSH (2.23 ± 0.54 µg/ml) recorded for the non-diabetic female
... Show MoreMn(II), Co(II), Ni(II), Cu(II), and Cr(III) metal complexes with the ligand (L) [3-(2nitro benzylidene) amino-2-thioxoimidazolidin-4-one] have been prepared and characterized in their solid state using the elemental micro analysis (C.H.N.S), flame atomic absorption, UV-Vis spectroscopy, FT-IR, magnetic susceptibility measurements, and electrical molar conductivity. The ratio of metal to ligand [M:L] was got for all complexes in the ethanol by using the molar ratio method, which produced comparable results with those results obtained for the solid complexes. From the data of all techniques, octahedral geometry was proposed for Cr(III), Mn(II), and Co(II) complexes, while tetrahedral structure was proposed for Ni(II), Cu(II) complexes.
Type 2 diabetes mellitus (T2DM) is a chronic disorder that is associated with the imbalance of trace elements which are involved in many functions especially enzyme activities. Changes in the levels of serum elements probably can create some complications in type 2 diabetes mellitus. Previous experimental and clinical studies report that oxidative stress plays a major role in the pathogenesis and development of (T2DM). However, the exact mechanism of oxidative stress could contribute to and accelerate the development of (T2DM).
The aim of this study contained the following sections: firstly, to determine some biochemical parameters in subjects with type 2 diabetes mellitus (T2DM) like lipid peroxidation marker, malondialdeh
... Show More