Chlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via modest reaction barriers. As a result of localization of excess electrons left behind after creation of oxygen vacancies, analogous fission over an oxygen vacant surface systematically necessitates lower energy barriers. Dehydrochlorination of CE and CA molecules preferentially proceeds via a dissociative addition route; however, subsequent desorption of vinyl and ethyl moieties requires less energy than surface assisted β C–H bond breakage. The profound stability of hydrocarbon species on the surface contributes to the observed deactivation of ceria at temperatures as low as 580 K under pyrolytic conditions. Adsorption of an oxygen molecule at an oxygen vacant site initiates decomposition of the adsorbed phenyl moiety. Likewise, adsorbed surface hydroxyl groups serve as the hydrogen source in the observed conversion of CB into benzene. A plausible mechanism for the formation of 1,4-dichlorobenzene incorporates abstraction of a para hydrogen in the CB molecule by an O− surface anion followed by chlorine transfer from the surface. Plotted conversion–temperature profiles via a simplified kinetic model against corresponding experimental profiles exhibit a reasonable agreement. The results from this study could be useful in the ongoing efforts to improve ceria's catalytic capacity for destroying CVOCs.
Objective: To evaluate and compare the effect of mechanical surface treatment (groove, aluminum oxide particles)
with 45 degree bevel type of joint on tensile bond strength of acrylic specimens repaired by two curing methods
(microwave and water both).
Methodology: Eighty specimens (80) were prepared from pink heat cure acrylic resin. They were divided into two
main groups (40 specimen repaired by microwave energy and 40 specimens repaired by water bath method).Each
group can be divided into four subgroups of ten according to the surface treatment. The control group A was left
intact, group B received no surface treatment, group C and D received surface treatment by (groove, 50 m aluminum
oxide particles). Specimens
Iodine-doped polythiophene thin films are prepared by aerosol assisted plasma jet polymerization at atmospheric pressure and room temperature. The doping of iodine was carried out in situ by employing iodine crystals in thiophene monomer by weight mixing ratios of 1%, 3%, 5% and 7%. The chemical composition analyses of pure and iodine-doped and heat-treated polythiophene thin films are carried out by FTIR spectroscopy studies. The optical band gaps of the films are evaluated from absorption spectrum studies. Direct transition energy gaps are determined from Tauc plots. The structural changes of polythiophene upon doping and the reduction of optical band gap are explained on the basis of the results obtained from FTIR spectroscopy, UV–V
... Show MoreIn this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
INFLUENCE OF SOME FACTOR ON SOMATIC EMBRYOS INDUCTION AND GERMINATION OF DATE PALM CV BARHI BY USING CELL SUSPENSION CULTURE TECHNIQUEe
In this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap fo
... Show MoreThe toxicological risks and lifetime cancer risks associated with exposure to disinfection by-products (DBPs) including Halloacetic acids (HAAs) and trihalomethanes (THMs) compounds by drinking water in several districts in Wassit Province were estimated. The seasonal variation of HAAs and THMs compounds in drinking water have indicated that the mean values for total HAAs (THAAs) and total THMs (TTHMs) ranged from 43.2 to 72.4 mg/l and from 40 to 115.5 mg/l, respectively. The World health organization index for additive toxicity approach was non-compliant with the WHO guideline value in summer and autumn seasons and this means that THMs concentration has adverse toxic health effects. The multi-pathway of lifetime hu
... Show MoreINFLUENCE OF SOME FACTOR ON SOMATIC EMBRYOS INDUCTION AND GERMINATION OF DATE PALM BARHI C.V BY USING CELL SUSPENSION CULTURE TECHNIQUE
Concrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as
Staphylococcal enterotoxin‐B (SEB) is one of the most potent bacterial superantigens that exerts profound toxic effects by inducing a cytokine storm. Inhaled SEB can cause acute respiratory distress syndrome (ARDS), which is often fatal and with no effective treatments.
Efficacy of Δ9‐tetrahydrocannabinol (THC) was tested in a mouse model of SEB‐mediated ARDS, in which lung inflammation, alterations in gut/lung microbiota and production of short‐chain fatty acids (SCFAs) was measured. Gene dysregulation of lung epithelial cells was studied by transcriptome arrays. F
Integrating Renewable Energy (RE) into Distribution Power Networks (DPNs) is a choice for efficient and sustainable electricity. Controlling the power factor of these sources is one of the techniques employed to manage the power loss of the grid. Capacitor banks have been employed to control phantom power, improving voltage and reducing power losses for several decades. The voltage sag and the significant power losses in the Iraqi DPN make it good evidence to be a case study proving the efficiency enhancement by adjusting the RE power factor. Therefore, this paper studies a part of the Iraqi network in a windy and sunny region, the Badra-Zurbatya-11 kV feeder, in the Wasit governorate. A substation of hybrid RE sources is connected to this
... Show More