Chlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via modest reaction barriers. As a result of localization of excess electrons left behind after creation of oxygen vacancies, analogous fission over an oxygen vacant surface systematically necessitates lower energy barriers. Dehydrochlorination of CE and CA molecules preferentially proceeds via a dissociative addition route; however, subsequent desorption of vinyl and ethyl moieties requires less energy than surface assisted β C–H bond breakage. The profound stability of hydrocarbon species on the surface contributes to the observed deactivation of ceria at temperatures as low as 580 K under pyrolytic conditions. Adsorption of an oxygen molecule at an oxygen vacant site initiates decomposition of the adsorbed phenyl moiety. Likewise, adsorbed surface hydroxyl groups serve as the hydrogen source in the observed conversion of CB into benzene. A plausible mechanism for the formation of 1,4-dichlorobenzene incorporates abstraction of a para hydrogen in the CB molecule by an O− surface anion followed by chlorine transfer from the surface. Plotted conversion–temperature profiles via a simplified kinetic model against corresponding experimental profiles exhibit a reasonable agreement. The results from this study could be useful in the ongoing efforts to improve ceria's catalytic capacity for destroying CVOCs.
The inner wasteland can be observed in Samuel Beckett’s early and later plays. His characters suffer from loss of identity, emotions, and sense of time. They lead a life of failure, repetition, inaction, loneliness, doubt, suffering, and nothingness. The inner wasteland includes many aspects, such as the multi and split identity, the habitual repetitive element of life, the dark sorrowful life the characters lead, lack of communication and relations among them, their unfree, inactive condition, their foggy terrible recollections, loneliness, dryness of love, and uncertainty. The analysis and the illustration of each aspect will show how the inner wasteland is intensified in the selected later plays of Beckett.
The Mauddud Formation was one of the important and widespread Lower Cretaceous period formations in Iraq. It has been studied in three wells (EB. 55, EB. 58, and EB. 59) within the East Baghdad Oil Field, Baghdad, central Iraq. 280 thin sections were studied by microscope to determine fauna, the formation composed of limestone and dolomitized limestone in some parts which tends to be marl in some parts, forty species and genus of benthic foraminifera have been identified beside algae and other fossils, three biozones have been identified in the range which is: Orbitolina qatarica range zone (Late Albian), Orbitolina sefini range zone (Late Albian – Early Cenomanian) and Orbitolina concava range zone (Early Cenomanian), The age of
... Show MoreDry gas is considered one of the most environmentally friendly sources of energy. As a result, developing an efficient strategy for storing this gas has become essential. In this work, MOF-199 was synthesized and characterized in order to investigate the MOF-199 in dry gas adsorption using a built-in volumetric system (methane, ethane, and propane from Basrah gas company). The MOF-199 (metal organic framework) was synthesized using the solvothermal method at 373K for 24h, and then it was characterized. The dry gas adsorption on MOF-199 was studied under various conditions (adsorbent dosage, contact time, temperature, and pressure). The isothermal adsorption of the dry gas had been studied on MOF-199 using two types of mo
... Show MoreThe x-ray fluorescence (XRF) of Znpc molecule with (flow of Ar) and Znpc molecule with (grow in N2) showed two peaks at (8.5and 9.5 Kv) referring to orbital transition ) K?-shell & K?-shell) respectively. The study of x-ray diffraction (XRD) where it was observed good growth of the crystal structure as a needle by the sublimation technique with a ?-phase of (monoclinic structure ) . Using Bragg equation the value of the interdistance of the crystalline plane (d-value) were calculated. We noticed good similarity with like once in the American Standards for Testing Material (ASTM) .Powder Diffraction File (PDF) Program was used to ensure the information obtained from (ASTM) . The output of (PDF) was compared with celn program, where the val
... Show MoreThis research involves the preparation of new ligands 1,1,2,2- tetrakis (sodium acetate thio)ethylene(L1) and 1,1,2- tris(sodiumacetatethio) ethylene(L2), through the reaction of disodium thioglycolate) with tetra chloro ethylene or tri chloro ethylene in (1:4) or (1:3) moler ratio . Homodinucliar complexes of general formlu [M2(L1)] and [M2(L2)ClH2O] , when M= Co(II), Ni(II), Cu (II) and Zn(II) also mono nuclear complexes of general formula [M(L2)] . The prepared complexes were characterized using spectral method (UV/Visible/ IR) , metal content analysis , magnetic and atomic measurements . The spectral and magnetic measurement indicats that some complexes have tetrahedral or square planar complexes environtment .
Some new 2,5-disubsituted-1,3,4-oxadiazole derivatives with azo group were synthesized by known reactions sequence . The structure of the synthesized compounds were confirmed by physical and spectral means .
The thermoelectric power as a function of temperature for the Iron-Manganese-Aluminum, Fe-Mn-Al, alloys for manganese concentrations 0.04, 0.06, 0.08, 0.10 and 0.20 have been investigated in the temperature range 300 K. to 500 K. these results showed that the thermoelectric power coefficient in hot probe measurements showed that the electrons are the majority charge carriers in these alloys.