Chlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via modest reaction barriers. As a result of localization of excess electrons left behind after creation of oxygen vacancies, analogous fission over an oxygen vacant surface systematically necessitates lower energy barriers. Dehydrochlorination of CE and CA molecules preferentially proceeds via a dissociative addition route; however, subsequent desorption of vinyl and ethyl moieties requires less energy than surface assisted β C–H bond breakage. The profound stability of hydrocarbon species on the surface contributes to the observed deactivation of ceria at temperatures as low as 580 K under pyrolytic conditions. Adsorption of an oxygen molecule at an oxygen vacant site initiates decomposition of the adsorbed phenyl moiety. Likewise, adsorbed surface hydroxyl groups serve as the hydrogen source in the observed conversion of CB into benzene. A plausible mechanism for the formation of 1,4-dichlorobenzene incorporates abstraction of a para hydrogen in the CB molecule by an O− surface anion followed by chlorine transfer from the surface. Plotted conversion–temperature profiles via a simplified kinetic model against corresponding experimental profiles exhibit a reasonable agreement. The results from this study could be useful in the ongoing efforts to improve ceria's catalytic capacity for destroying CVOCs.
background: human epidermal growth factor receptor-2 (her2/neu) is related to growth factor receptors with alkaline kinase activity and it is regarded as important prognostic and therapeutic factor that can depended on in breast cancer therapy. HER2/neu expression by immunohistochemistry (IHC) is submitted to a great in terob server inconsistency. Subsequently additional confirmatory tests for assessment of gene alterations and amplification status are needed for patients with early or metastatic breast cancer. In situ hybridization techniques and specifically Chromogenic in situ hybridization (CISH) was arise as a practical, cost-effective, and alternative to fluorescent in situ hybridization in testing for gene alterationAims of the study
... Show MoreOrganic permeable‐base transistors (OPBTs) show potential for high‐speed, flexible electronics. Scaling laws of OPBTs are discussed and it is shown that OPBT performance can be increased by reducing their effective device area. Comparing the performance of optimized OPBTs with state‐of‐the‐art organic field‐effect transistors (OFETs), it is shown that OPBTs have a higher potential for an increased transit frequency. Not only do OPBTs reach higher transconductance values without the need for sophisticated structuring techniques, but they are also less sensitive to parasitic contact resistances. With the help of a 2D numerical model, the reduced contact resistances of OPBTs are explained by a homogeneous injection of current acros
... Show MoreThe syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S =
... Show MoreBackground: Saliva is one of the most important etiological host factors in relation to dental caries. It affects the carious process by its organic and inorganic constituents; in addition to its physiological functions as (flow rate, pH and buffer capacity). The aims of this study were to determine the concentrations of major elements (calcium and phosphorus) and trace elements (ferrous iron, nickel, chromium and aluminum) in saliva among a group of adolescent girls, and to explore the relation of these elements, flow rate and pH with dental caries. Material & Methods: The study group consisted of 25 girls with an age of 13-15 years old. Dental caries was diagnosed by both clinical and radiographical examinations following the criteria of
... Show MoreIn the present work, HgBa2Can-1CunO2n+2+δ superconducting thin films with (100) nm thickness were (n=1, 2 and 3) prepared by Pulsed Laser Deposition technique on glass substrate at R.T (300) K, have been synthesize. The effect of Cu content on the structural, surface morphology, optical and electrical properties of HgBa2Can-1CunO2n+2+δ films were investigated and analyzed. The results of XRD analysis show that all samples are polycrystalline structure with orthorhombic phase, the change of Cu concentration in samples produce changes in the mass density, lattice parameter and the ratio (c/a). AFM techniques were used to examine the surface morphology of HgBa2Can-1CunO2n+2+δ superconducting films, the study showed the values of surface rou
... Show MoreThe yellow scale insect 
This paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded fro
... Show More 
        