Statisticians often use regression models like parametric, nonparametric, and semi-parametric models to represent economic and social phenomena. These models explain the relationships between different variables in these phenomena. One of the parametric model techniques is conic projection regression. It helps to find the most important slopes for multidimensional data using prior information about the regression's parameters to estimate the most efficient estimator. R algorithms, written in the R language, simplify this complex method. These algorithms are based on quadratic programming, which makes the estimations more accurate.
Diabetes mellitus type 2 (T2DM) is a chronic and progressive condition, which affects people all around the world. The risk of complications increases with age if the disease is not managed properly. Diabetic neuropathy is caused by excessive blood glucose and lipid levels, resulting in nerve damage. Apelin is a peptide hormone that is found in different human organs, including the central nervous system and adipose tissue. The aim of this study is to estimate Apelin levels in diabetes type 2 and Diabetic peripheral Neuropathy (DPN) Iraqi patients and show the extent of peripheral nerve damage. The current study included 120 participants: 40 patients with Diabetes Mellitus, 40 patients with Diabetic peripheral Neuropathy, and 40 healthy
... Show More<p>Recently, reconfigurable intelligent surfaces have an increasing role to enhance the coverage and quality of mobile networks especially when the received signal level is very weak because of obstacles and random fluctuation. This motivates the researchers to add more contributions to the fields of reconfigurable intelligent surfaces (RIS) in wireless communications. A substantial issue in reconfigurable intelligent surfaces is the huge overhead for channel state information estimation which limits the system’s performance, oppressively. In this work, a newly proposed method is to estimate the angle of arrival and path loss at the RIS side and then send short information to the base station rather than huge overhe
... Show MoreWhen the depth of stressed soil is rather small, Plate Load Test (PLT) becomes the most efficient test to estimate the soil properties for design purposes. Among these properties, modulus of subgrade reaction is the most important one that usually employed in roads and concrete pavement design. Two methods are available to perform PLT: static and dynamic methods. Static PLT is usually adopted due to its simplicity and time saving to be performs in comparison with cyclic (dynamic) method. The two methods are described in ASTM standard.
In this paper the effect of the test method used in PLT in estimation of some mechanical soil properties was distinguished via a series of both test methods applied in a same site. The comparison of
... Show MoreAkaike’s Information Criterion (AIC) is a popular method for estimation the number of sources impinging on an array of sensors, which is a problem of great interest in several applications. The performance of AIC degrades under low Signal-to-Noise Ratio (SNR). This paper is concerned with the development and application of quadrature mirror filters (QMF) for improving the performance of AIC. A new system is proposed to estimate the number of sources by applying AIC to the outputs of filter bank consisting quadrature mirror filters (QMF). The proposed system can estimate the number of sources under low signal-to-noise ratio (SNR).
Permeability is one of the essential petrophysical properties of rocks, reflecting the rock's ability to pass fluids. It is considered the basis for building any model to predict well deliverability. Yamama formation carbonate rocks are distinguished by sedimentary cycles that separate formation into reservoir units and insulating layers, a very complex porous system caused by secondary porosity due to substitute and dissolution processes. Those factors create permeability variables and vary significantly. Three ways used for permeability calculation, the firstly was the classical method, which only related the permeability to the porosity, resulting in a weak relationship. Secondly, the flow zone indicator (FZI) was divided reservoir into
... Show MoreThis study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduce
... Show MoreGiardia lamblia is one of most common protozoan cause diarrheas, and the most health problem in development countries worldwide. Our work aimed to assess activity and toxicity of metronidazole loaded silver nanoparticles in treatment of acute giardiasis in mice. After inoculated mice with Giardia cysts in a dose of 105 cyst for acute infection, treatments were given for eight days. Number Giardia cysts in stool were discovered. Toxicity nanoparticles was estimated by Measurement oxidative stress markers (GSH) and (MDA) in liver, kidney tissue homogenate. The results showed single therapy was better effect by silver nanoparticles, highest percentages of reduction in number of cysts Giardia lamblia of infected mice treated with silver nanopar
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.